• Title/Summary/Keyword: cyclin B1

Search Result 201, Processing Time 0.032 seconds

Cha-ga Mushroom Water Extract induces G0/G1 Arrest in B16-F10 Melanoma cells (차가버섯추출물에 의한 흑색종의 세포주기 억제효과)

  • Youn, Myung-Ja;Song, Jeong-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.204-208
    • /
    • 2007
  • Chaga mushroom extract is well known as immune modulator and anti-cancer agent. However, the molecular mechanism by which Chaga exerts cell cycle arrest and apoptosis of cancer cells is poorly understood. In this study, we demonstrated anti-proliferative effects of Chaga extract on murine melanoma B16 cells. Chaga extract dose-dependently inhibited cell growth along with the arrest of G0/G1 phase and the induction of apoptotic cell death. Treatment with Chaga extract resulted in a decrease of cyclin E, cyclin D1, cdk 2, cdk 4 expression levels. Furthermore, in vivo inoculation study of B16 melanoma cells into Balb/c mice Chaga extract markedly suppressed the metastatic growth of tumor cells (6 folds, p<0.05,). These results indicate that Chaga mushroom extract induces apoptosis of B16 melanoma cells through arrest of G0/G1 phase in cell cycle.

Nardostachys Chinensis Induces G0/G1 Phase Cell Cycle Arrest in U937 Cells (감송향(甘松香) 물추출물의 세포주기 정지를 통한 U937세포의 성장억제 효과)

  • Kang, Min-Soo;Ju, Sung-Min;Jeon, Byung-Jae;Yang, Hyun-Mo;Kim3, Won-Sin;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.189-194
    • /
    • 2011
  • Nardostachys chinensis (N. Chinensis) belonging to the family Valerianaceae have been used in traditional medicine to elicit stomachic and sedative effects. The present study investigated the effects of water extract of N. Chinensis in human lymphoma U937 cells. The proliferation of U937 cells was decreased by N. Chinensis. Anti-proliferative effect of N. Chinensis on U937 cells was associated with G0/G1 phase arrest, which was mediated by regulating the expression of p21 and p27 protein. In addition, the levels of CDK2, CDK4, CDK6, Cyclin D3, and Cyclin A were decreased, but Cyclin D1, Cyclin D2 and Cyclin E were essentially undetectable. N. Chinensis induced the differentiation of U937 as shown by increased expression of differentiation surface antigen CD11b, but not CD14. Taken together, these results demonstrated that N. Chinensis potently inhibits the proliferation of U937 cells via the G0/G1 phase cell cycle arrest in association with p21 and p27, and induces granulocytic differentiation.

Ginsenoside Rh2 inhibits proliferation of human promyelocytic HL-60 leukemia cells via $G_0/G_1$ phase arrest and induction of differentiation

  • Cho, Seoung-Hee;Kim, Dong-Hyun;Lee, Kyung-Tae
    • Proceedings of the Ginseng society Conference
    • /
    • 2006.05a
    • /
    • pp.3-12
    • /
    • 2006
  • 1 The present work was performed to investigate the effects of ginsenoside Rh2 on proliferation, cell cycle-regulation and differentiation of human leukemia HL-60 cells as well as the underlying mechanisms for these effects. 2 Ginsenoside Rh2 potently inhibited the proliferation of HL-60 cells in both a dose- and time-dependent manner with an $IC_{50}$, $20{\mu}M$. 3 DNA flow-cytometry indicated that ginsenoside Rh2 markedly induced a $G_1$ phase arrest of HL-60 cells. 4 Among the $G_1$ phase cell cycle-related proteins, the levels of cyclin-dependent kinase(CDK)4, 6 and cyclin D1, cyclin D2, cyclin D3 were reduced by ginsenoside Rh2, whereas the steadystate levels of CDK2 and cyclin E were unaffected. 5 The protein levels of a CDK inhibitor p16, $p21^{CIP1/WAF1}$ and $p27^{KIP1}$ were markedly increased by ginsenoside Rh2. 6 Ginsenoside Rh2 markedly enhanced the binding of $p21^{CIP1/WAF1}$ and $p27^{KIP1}$ with CDK2 and CDK6, resulting in the reduced activity of both kinases and the hypophosphorylation of Rb protein. 7 We furthermore suggest that ginsenoside Rh2 is a potent inducer of the differentiation of HL-60 cells, based on observations such as a reduction of the nitroblue tetrazolium level, an increase in the esterase activities and phagocytic activity, morphology changes, and the expression of CD11b, CD14, CD64 and CD66b surface antigens. 8 In conclusion, the onset of ginsenoside Rh2-induced the $G_0/G_1$ arrest of HL-60 cells prior to the differentiation is linked to a sharp up-regulation of the $p21^{CIP1/WAF1}$ level and a decrease in the CDK2, CDK4 and CDK6 activities. This is the first report demonstrating that ginsenoside Rh2 potently inhibits the proliferation of human promyelocytic HL-60 cells via the $G_1$ phase cell cycle arrest and differentiation induction.

  • PDF

Involvement of Cdk Inhibitor p21(WIP1/CIP1) in G2/M Arrest of Human Myeloid Leukemia U937 Cells by N-Methyl-N'-Nitro-N-Nitrosoguanidine (N-methyl-N'-nitro-N-nitrosoguanidine에 의한 인체백혈병세포의 G2/M arrest 유발에서 Cdk inhibitor p21(WIP1/CIP1)의 관련성)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, to elucidate the further mechanisms of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced growth arrest, we investigated the effect of MNNG on cell cycle and proliferation in U937 cells, a p53-null human myeloid leukemia cell line. It was found that MNNG causes an arrest at the G2/M phase of the cell cycle and induces apoptosis, which is closely correlated to inhibition of cyclin B1 and cyelin-dependent kinase (Cdk) 2-associated kinase activities. MNNG treatment in. creased protein and mRNA levels of the Cdk inhibitor p21(WAF1/CIP1), and activated the reporter construct of a p21 promoter. By using p21 promoter deletion constructs, the MNNG-responsive element was mapped to a region between 113 and 61 relative to the transcription start site. These data indicate that in U937 cells MNNG can circumvent the loss of wild-type p53 function and induce critical downstream regulatory events leading to transcriptional activation of p21. Present results indicate that the p53-independent up-regulation of p21 by MNNG is likely responsible for the inhibition of cyclin/Cdk complex kinase activity rather than the down-regulation of cyclins and Cdks expression. These novel phenomena have not been previously described and provide important new insights into the possible biological effects of MNNG.

Anticancer Activity of Novel Daphnane Diterpenoids from Daphne genkwa through Cell-Cycle Arrest and Suppression of Akt/STAT/Src Signalings in Human Lung Cancer Cells

  • Jo, Si-Kyoung;Hong, Ji-Young;Park, Hyen Joo;Lee, Sang Kook
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.513-519
    • /
    • 2012
  • Although the immense efforts have been made for cancer prevention, early diagnosis, and treatment, cancer morbidity and mortality has not been decreased during last forty years. Especially, lung cancer is top-ranked in cancer-associated human death. Therefore, effective strategy is strongly required for the management of lung cancer. In the present study, we found that novel daphnane diterpenoids, yuanhualine (YL), yuanhuahine (YH) and yuanhuagine (YG) isolated from the flower of Daphne genkwa (Thymelaeaceae), exhibited potent anti-proliferative activities against human lung A549 cells with the $IC_{50}$ values of 7.0, 15.2 and 24.7 nM, respectively. Flow cytometric analysis revealed that the daphnane diterpenoids induced cell-cycle arrest in the G0/G1 as well as G2/M phase in A549 cells. The cell-cycle arrests were well correlated with the expression of checkpoint proteins including the up-regulation of cyclin-dependent kinase inhibitor p21 and p53 and down-regulation of cyclin A, cyclin B1, cyclin E, cyclin dependent kinase 4, cdc2, phosphorylation of Rb and cMyc expression. In the analysis of signal transduction molecules, the daphnane diterpenoids suppressed the activation of Akt, STAT3 and Src in human lung cancer cells. The daphnane diterpenoids also exerted the potent anti-proliferative activity against anticancer-drug resistant cancer cells including gemcitabine-resistant A549, gefitinib-, erlotinib-resistant H292 cells. Synergistic effects in the growth inhibition were also observed when yuanhualine was combined with gemcitabine, gefitinib or erlotinib in A549 cells. Taken together, these findings suggest that the novel daphnane diterpenoids might provide lead candidates for the development of therapeutic agents for human lung cancers.

The Role of Heat Shock Protein 25 in Radiation Resistance

  • Lee Yoon-Jin;Lee Su-Jae;Bae Sangwoo;Lee Yun-Sil
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.2
    • /
    • pp.51-59
    • /
    • 2005
  • Overexpression of HSP25 delayed cell growth, increased the level of $p21^{waf}$, reduced the levels of cyclin D1, cylcin A and cdc2, and induced radioresistance in L929 cells. We demonstrated that extracellular regulated kinase (ERK) and MAP kinase/ERK kinase (MEK) expressions as well as their activation (phospho-forms) were inhibited by hsp25 overexpression. To confirm the relationship between ERK1/2 and hsp25-mediated radioresistance, ERK1 or ERK2 cDNA was transiently transfected into the hsp25 overexpressed cells and their radioresistance was examined. HSP25-mediated radioresistance was abolished by overexpression of ERK2, but not by overexpression of ERK1. Alteration of cell cycle distribution and cell cycle related protein expressions (cyclin D, cyclin A and cdc2) by hsp25 overexpression were also recovered by ERK2 cDNA transfection. Increase in Bc1-2 protein by hsp25 gene transfection was also reduced by subsequent ERK2 cDNA-transfection. In addition, HSP25 overexpression reduced reactive oxygen species (ROS) and increased expression of manganese superoxide dismutase (MnSOD) gene. Increased activation of NF-kB (IkB degradation) was also found in hsp25-overexpressed cells. Moreover, transfection of hsp25 antisense gene abrogated all the HSP25-mediated phenomena. To further elucidate the exact relationship between MnSOD induction and NF-kB activation, dominant negative $I-kB\alpha(I-kB\alpha-DN)$ construction was transfected to HSP25 overexpressed cells. $I-kB\alpha-DN$ inhibited HSP25 mediated MnSOD gene expression. In addition, HSP25 mediated radioresistance was blocked by $I-kB\alpha-DN$ transfection. Blockage of MnSOD with antisense oligonucleotides in HSP25 overexpressed cells, prevented apoptosis and returned the ERK1/2 activation to the control level. From the above results, we suggest for the first time that reduced oxidative damage by HSP25 was due to MnSOD-mediated down regulation of ERK1/2.

  • PDF

MiR-374b Promotes Proliferation and Inhibits Apoptosis of Human GIST Cells by Inhibiting PTEN through Activation of the PI3K/Akt Pathway

  • Long, Zi-Wen;Wu, Jiang-Hong;Hong, Cai;Wang, Ya-Nong;Zhou, Ye
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.532-544
    • /
    • 2018
  • Gastrointestinal stromal tumours (GIST) are the most common mesenchymal tumors of the gastrointestinal (GI) tract. In order to investigate a new treatment fot GIST, we hypothesized the effect of miR-374b targeting PTEN gene-mediated PI3K/Akt signal transduction pathway on proliferation and apoptosis of human gastrointestinal stromal tumor (GIST) cells. We obtained GIST tissues and adjacent normal tissues from 143 patients with GIST to measure the levels of miR-374b, PTEN, PI3K, Akt, caspase9, Bax, MMP2, MMP9, ki67, PCNA, P53 and cyclinD1. Finally, cell viability, cell cycle and apoptosis were detected. According to the KFGG analysis of DEGs, PTEN was involved in a variety of signaling pathways and miRs were associated with cancer development. The results showed that MiR-374b was highly expressed, while PTEN was downregulated in the GIST tissues. The levels of miR-374b, PI3K, AKT and PTEN were related to tumor diameter and pathological stage. Additionally, miR-374b increased the mRNA and protein levels of PI3K, Akt, MMP2, MMP9, P53 and cyclinD1, suggesting that miR-374b activates PI3K/Akt signaling pathway in GIST-T1 cells. Moreover, MiR374b promoted cell viability, migration, invasion, and cell cycle entry, and inhibited apoptosis in GIST cells. Taken together, the results indicated that miR-374b promotes viability and inhibits apoptosis of human GIST cells by targeting PTEN gene through the PI3K/Akt signaling pathway. Thus, this study provides a new potential target for GIST treatment.

Protective Effects of Seonpyejeongcheon-tang on Elastase-Induced Lung Injury in Mice (Elastase 매개성 폐조직 손상에 대한 선폐정천탕(宣肺定喘湯)의 보호효과)

  • Yoon, Jong-Man;Park, Yang-Chun
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.1
    • /
    • pp.84-101
    • /
    • 2010
  • Objectives : This study aimed to evaluate the protective effects of Seonpyejeongcheon-tang (SJT) on elastase-induced lung injury. Materials and Methods : The extract of SJT was treated to A549 cells and an elastase-induced lung injury mouse model. Then, various parameters such as cell-based cytoprotective activity and histopathological findings were analyzed. Results : SJT showed a protective effect on elastase-induced cytotoxicity in A549 cells. This effect was correlated with analysis for caspase 3 levels, collagen and elastin contents, protein level of cyclin B 1, Cdk1, and Erk1/2, and gene expression of TNF-$\alpha$ and IL-$1{\beta}$ in A549 cells. SJT treatment also revealed a protective effect on elastase-induced lung injury in mouse model. This effect was evidenced via histopathological findings, including immunofluoresence stains against elastin, collagen, and caspase 3, and protein levels of cyclin B1, Cdc2, and Erk1/2 in lung tissue. Conclusion : These data suggest that SJT has pharmaceutical properties on lung injury. This study thus provides scientific evidence for the efficacy of SJT for clinical application to patients with chronic obstructive pulmonary disease.