• Title/Summary/Keyword: cyclic voltametry, CV

Search Result 9, Processing Time 0.023 seconds

Synthesis and Characterisation of Hole Transporting Materials Based on N,N,N-Tris-[4-(Naphthalen-1-yl-phenylamino)Phenyl]-N,N,N-Triphenylbenzene-1,3,5-Triamine (N,N,N-Tris-[4-(Naphthalen-1-yl-phenylamino)Phenyl]-N,N,N-Triphenylbenzene-1,3,5-Triamine을 이용한 Hole Transporting 재료의 합성)

  • Mathew, Siji;Haridas, Karickal R.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.717-722
    • /
    • 2010
  • Two derivatives of star shaped compounds based on naphthylamine with symmetric trisubstituted benzene as core, methoxy and ethoxy as end substitutions are synthesized. The synthesized compounds are characterized by UV-visible, FT-IR and NMR spectrometric techniques. The electronic and thermal properties of the compounds are studied using cyclic voltametry (CV) and differential scanning calorimetry (DSC) respectively. The data's obtained have similarity with the arylamines that have been already used in optoelectronic devices. So these compounds are interesting materials for applications in such devices.

Structure and Electrochemical Behavior of Aromatic Thiol Self-Assembled Monolayers on Au(111)

  • Noh, Jae-geun;Park, Ha-jung;Jeong, Young-do;Kwon, Seung-wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.403-406
    • /
    • 2006
  • The surface structure and electrochemical behavior of self-assembled monolayers (SAMs) formed by aromatic thiols on Au(111) were investigated by scanning tunneling microscopy (STM) and cyclic voltammetry. Benzenethiol (BT) forms disordered phases on Au(111) which are composed of many bright domains, while benzyl mercaptan (BM), with a methylene unit between the aromatic group and sulfur atom, forms twodimensional ordered SAMs on Au(111). In addition, two phase-separated domains consisting of disordered and ordered phases were observed in binary SAMs formed from a 1 : 1 mixed ethanol solution of BT and BM. From STM and CV measurements, we found that the blocking efficiency of aromatic thiol SAMs coated on an Au(111) electrode for an electron transfer reaction decreases as the structural order of the SAMs increases. Molecular-scale STM and CV results obtained here will be very useful in designing functional SAMs for further applications, such as the improvement of corrosion passivation of Au(111) on an aromatic thiolmodified Au(111) surface.

Characterization of Electrochemical Ammonia Electrolysis Using a Platinum Electrode for Anodic Reaction (Pt포일 양극을 이용한 전기화학적 암모니아 수전해 특성 연구)

  • CHOI, JEONGMIN;KIM, HAKDEOK;SONG, JUHUN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.337-342
    • /
    • 2022
  • In this study, a water electrolysis was studied to investigate the effect of ammonia on current density and H2 gas production. A H type cell with three electrodes was used and KOH solution was used as electrolyte. The conventional platinum foil was used for working electrode, whereas nickel foam was used for counter electrode. CV experiment was performed to see the activity of ammonia oxidation reaction. In addition, CP experiment was done to examine the dependence of Faraday efficiency of hydrogen on current density and NH3 concentration. The CV result shows the 0.5M NH3 concentration required for highest current density and reliable operation. The CP result shows the increased current density leads to higher H2 generation. The higher H2 production and subsequent energy efficiency was observed for 0.5M NH3 using a Pt/13%Rh coil for a cathode as compared to those in water electrolysis.

Synthesis and Physical Properties of Decylbithiophene End-Capped Oligomers Based on Naphthalene, Anthracene and Benzo[1,2-b:4,5-b']dithiophene

  • Jang, Sang-Hun;Tai, Truong Ba;Kim, Min-Kyu;Han, Jeong-Woo;Kim, Yun-Hi;Shin, Sung-Chul;Yoon, Yong-Jin;Kwon, Soon-Ki;Lee, Sang-Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.618-622
    • /
    • 2009
  • The new candidates for OTFTs, which were composed of naphthalene, anthracene, benzo[1,2-b:4,5-b’]dithiophene and 2-decylbithiophene end-capper were synthesized under Suzuki coupling reaction conditions. All of the oligomers were characterized by FT-IR, mass analysis, UV-vis, PL spectrum, cyclic voltametry (CV), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), $^1H-NMR\;and\;^{13}C-NMR$. Investigation of physical properties showed that all of the oligomers have higher oxidation potential and good thermal stability. Especially, DBT-DtB-DBT is soluble in common solvents and suitable for low cost processing technologies.

Nanocomposite Electrodes for Methanol Electrooxidation Fabricated by a Sputtering Deposition Method (직접메탄올 연료전지를 위한 박막형 나노복합 전극구조 분석)

  • Ko, A-Ra;Han, Sang-Beom;Song, You-Jung;Lee, Jong-Min;Kim, Jy-Yeon;Lee, Young-Woo;Park, Kyung-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.403-405
    • /
    • 2009
  • RF-스퍼터링법을 사용하여 메탄올 산화반응을 위해 박막형 전극을 제조하였다. 전극은 텅스텐 탄화물(WC)과 텅스텐 산화물($WO_3$), 그리고 백금(Pt) 타겟을 이용하였으며 그 구조적 특성과 전기화학적 특성을 TEM(Transmission electron microscopy와 CV(Cyclic Voltametry)를 통하여 촉매적 활성을 측정해 보았다. 같은 양의 백금과의 활성을 비교하고 활성을 확인하였다.

  • PDF

Electrochemical Properties of Carbon Nanofiber Electrode with Different PVDF Binder Concentration (PVDF 접합제 농도 변화와 탄소나노섬유 전극의 전기화학적 특성)

  • Choi, Weon-Kyung;Cho, Tae-Hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.4
    • /
    • pp.446-451
    • /
    • 2007
  • Physicochemical properties of carbon nanofibers were evaluated as a supercacitor electrode materials could store electrochemical energy reversibly. A capacitance of carbon nanofiber electrode was increased gradually, depending on the PVDF binder ratio. A feasibility of EDLC electrode was estimated with specific surface area measurement by BET method and mesopore structure of carbon nanofiber surface could be explained electrochemical absorption-desorption in aqueous electrolyte. PVDF 5 wt.% ratio in electrode was observed a suitable binder amount by CV result.

A Study on the Performance Recovery of $H_2S$ Poisoned PEMFC ($H_2S$ 피독 고분자 전해질막 연료전지의 연료극 성능 회복 연구)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.102-107
    • /
    • 2012
  • The recovery of a Pt anode in a PEMFC through 30 ppm $H_2S/H_2$ exposure was evaluated by using a cyclic voltametry(CV) scan. First, the PEMFC unit cell performanc loss was measured three times under an anode feeding with 30 ppm $H_2S/H_2$ for 1hr at $0.5A/cm^2$ of current density. The initial cell performance was $1.16A/cm^2$ at 0.6 V without $H_2S$ poisoning. After first poisoning step for 1hr the cell performance was decrease to $0.77A/cm^2$, and the further poisoning steps decreased up 0.57 V. Finally, the recovery of the cell performance of $H_2S$ poisoned PEMFC was achieved up to 90.3% by applying CV scan. Moreover, we also found out that another possible approach for over 80% recovery of the cell performance of $H_2S$ poisoned anode Pt catalyst layer was to just inject fresh hydrogen into the anode feeding stream.

Low temperature preparation of Pt alloy electrocatalysts for DMFC

  • Song, Min-Wu;Lee, Kyeong-Seop;Kim, Young-Soon;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.171-171
    • /
    • 2009
  • The electrodes are usually made of a porous mixture of carbon-supported platinum and ionomers. $SnO_2$ particles provide as supports that have been used for DMFCs, and it have high catalytic activities toward methanol oxidation. The main advantage of $SnO_2$ supported electrodes is that it has strong chemical interactions with metallic components. The high activity to a synergistic bifunctional mechanism in which Pt provides the adsorption sites for CO, while oxygen adsorbs dissociative on $SnO_2$. The reaction between the adsorbed species occurs at the Pt/$SnO_2$ boundary. The morphological observations were characterized by FESEM and transmission electron microscopy (TEM). $SnO_2$ particles crystallinity was analyzed by the X-ray diffraction (XRD). The surface bonded state of the $SnO_2$ particles and electrode materials were observed by the X-ray photoelectron spectroscopy (XPS). The electric properties of the Pt/$SnO_2$ catalyst for methanol oxidation have been investigated by the cyclic voltametry (CV) in 0.1M $H_2SO_4$ and 0.1M MeOH aqueous solution. The peak current density of methanol oxidation was increased as the $SnO_2$ content in the anode catalysts increased. Pt/$SnO_2$ catalysts improve the removal of CO ads species formed on the platinum surface during methanol electro-oxidation.

  • PDF

Preparation of Poly(propylene) Membrane Supported Gel Electrolyte Membranes for Rechargeable Lithium Ion Batteries through Thermal Polymerization of Di(ethylene glycol) Dimethacrylate (Di(ethylene glycol) Dimethacrylate의 열중합에 의한 Poly(propylene) 분리막으로 지지한 리튬이온 이차전지의 겔 전해질막 제조)

  • Yun, Mi-Hye;Kwon, So-Young;Jung, Yoo-Young;Cho, Doo-Hyun;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.259-266
    • /
    • 2010
  • Porous poly(propylene) supported gel polymer electrolytes (GPE) were synthesized by thermal polymerization of DEGDMA [Di(ethylene glycol) dimethacrylate] in electrolyte solutions (1 M solution of $LiPF_6$ in EC/DEC 1 : 1 mixture) at $70^{\circ}C$. AC impedance spectroscopy and cyclic voltammetry were used to evaluate its ionic conductivity and electrochemical stability window of the GPE membranes. Lithium ion battery (LIB) cells were also fabricated with $LiNi_{0.8}Co_{0.2}O_2$/graphite and GPE membranes via thermal polymerization process. Through the thermal polymerization, self sustaining GPE membranes with sufficient ionic conductivities (over $10^{-3}\;S/cm$) and electrochemical stabilities. The LIB cell with 5% monomer showed the best rate-capability and cycleability.