• Title/Summary/Keyword: cyclic testing

Search Result 285, Processing Time 0.022 seconds

The Effect of Surface Defects on the Cyclic Fatigue Fracture of HEROShaper Ni-Ti rotary files in a Dynamic Model: A Fractographic Analysis (Fractographic 분석을 통한 HEROShaper 니켈티타늄 전동 파일의 피로파절에 미치는 표면결함의 역할)

  • Lee, Jung-Kyu;Kim, Eui-Sung;Kang, Myoung-Whai;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.130-137
    • /
    • 2007
  • This in vitro study examined the effect of surface defects on cutting blades on the extent of the cyclic fatigue fracture of HEROShaper Ni-Ti rotary files using fractographic analysis of the fractured surfaces. A total of 45 HEROShaper (MicroMega) Ni-Ti rotary flies with a #30/.04 taper were divided into three groups of 15 each. Group 1 contained new HEROShapers without any surface defects. Group 2 contained HEROShapers with manufacturing defects such as metal rollover and machining marks. Croup 3 contained HEROShapers that had been clinically used for the canal preparation of 4-6 molars A fatigue-testing device was designed to allow cyclic tension and compressive stress on the tip of the instrument whilst maintaining similar conditions to those experienced in a clinic. The level of fatigue fracture time was measured using a computer connected the system. Statistical analysis was performed using a Tukey's test. Scanning electron microscopy (SEM) was used for fractographic analysis of the fractured surfaces. The fatigue fracture time between groups 1 and 2, and between groups 1 and 3 was significantly different (p<0.05) but there was no significant difference between groups 2 and 3 (p>0.05). A low magnification SEM views show brittle fracture as the main initial failure mode At higher magnification, the brittle fracture region showed clusters of fatigue striations and a large number of secondary cracks. These fractures typically led to a central region of catastrophic ductile failure. Qualitatively, the ductile fracture region was characterized by the formation of microvoids and dimpling. The fractured surfaces of the HEROShapers in groups 2 and 3 were always associated with pre-existing surface defects. Typically, the fractured surface in the brittle fracture region showed evidence of cleavage (transgranular) facets across the grains, as well as intergranular facets along the grain boundaries. These results show that surface defects on cutting blades of Ni-Ti rotary files might be the preferred sites for the origin of fatigue fracture under experimental conditions. Furthermore this work demonstrates the utility of fractography in evaluating the failure of Ni-Ti rotary flies.

Evaluation of Seismic Performance of High Strength Reinforced Concrete Exterior Beam-Column Joints Using High Ductile Fiber-Reinforced Mortar (고인성섬유 복합모르타르를 활용한 고강도 철근콘크리트 외부 보-기둥 접합부의 내진성능평가)

  • Ha, Gee-Joo;Shin, Jong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.419-428
    • /
    • 2013
  • In this study, experimental research was carried out to evaluate the constructability and seismic performance of high strength R/C exterior beam-column joints regions, with or without the shear reinforcement, using high ductile fiber-reinforced mortar. Five specimens of retrofitted the exterior beam-column joint regions using high ductile fiber-reinforced mortar are constructed and tested for their retrofit performances. Specimens designed by retrofitting the exterior beam-column joint regions (BCJNSP series) of existing reinforced concrete building showed a stable mode of failure and an increased its maximum load-carrying capacity by 1.09~2.03 times in comparison with specimen of BCJNS due to the effect of enhancing dispersion of crack control at the time of initial loading and bridging of fiber from retrofitting new high ductile materials during testing. Specimens of BCJNSP series attained its maximum load carrying capacity by 0.92~0.96 times and increased its energy dissipation capacity by 1.62 times when compared to standard specimen of BCJC with a displacement ductility of 4.

A Possible Test Method Proposed for Resilient Modulus (MR) and Analysis of Correlation between Resilient Modulus and Shear Modulus of Track Subgrade Soil (흙노반재료의 회복탄성계수(MR) 결정을 위한 반복삼축압축시험법 제시 및 변형계수 상관성 분석)

  • Park, Jae Beom;Choi, Chan Yong;Lim, Sang Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.85-98
    • /
    • 2017
  • In general, under the repetitive dynamic load generated by rail cars running on the track, subgrade soil experiences changes of stress conditions such as deviatoric stress (${\sigma}_d$) and bulk stress (${\theta}$). Due to the repetitive change of deviatoric stress (${\sigma}_d$) with number of loadings, the resilient modulus ($M_R$) can be obtained by using the measured resilient strain (${\varepsilon}_r$) after a sufficient number of loadings. At present, no plausible and unified test method has been proposed to obtain the resilient modulus of railway track subgrade soil. In this study, a possible test method for obtaining the resilient modulus ($M_R$) of railway track subgrade soil is proposed; this test, by utilizing repetitive triaxial compression testing, can consider all the important parameters, such as the confining stress, deviatoric stress, and number of loadings. By adapting and using the proposed test method to obtain $M_R$, $M_R$ values for compacted track subgrade soil can be successfully determined using soil obtained in three field sites of railway track construction with changing water content range from OMC. In addition, shear modulus (G) ~ shear strain (${\gamma}$) relation data were also obtained using a mid-size RC test. A correlation analysis was performed using the obtained G and $M_R$ values while considering the strain levels and modes of strain direction.

Evaluation of the Effective Width and Flexural Strength of the T-Stalled Walls (T형 벽체의 유효 폭 및 휨강도 평가)

  • 양지수;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.796-803
    • /
    • 2002
  • T-shaped walls have different strength, stiffness and ductility in the two opposite directions parallel to the web when subjected to horizontal in-plane loads. When the flange is in tension, the extent that the flange reinforcement contributes to the flexural strength will be subjected to shear-lag effect. Because of this shear-lag effect, the flange may not participate fully in the action with the web, and the effective flange width is needed for predicting the actual strength and stiffness of structures. The objective of this paper is to evaluate the effective flange width and actual strength of the T-shaped wall with Korean code specified detailing of the wall web. Three specimens were tested with cyclic lateral loading applied at top of the wall. A constant axial load of approximately 0.1f$\_$ck/$.$A$\_$g/ is maintained during the testing. Test results show that the effective flange width increases with increasing drift level, such that the entire overhanging flange of h/3 is effective at the maximum strength level. Therefore, the use of PCI or KBC(Korean Building Code) value of h/10 is unconservative with respect to detailing at the wall web boundary.

Experimental Evaluation of Weathering Performance for Duplex Coating Systems Combining Thermal Spraying Metals and Painting (금속용사와 도장의 복합피복방식법에 대한 실험적 내후성능평가)

  • Kim, In Tae;Jun, Je Hyong;Cha, Ki Hyuk;Jeong, Young Soo;Ahn, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.373-382
    • /
    • 2016
  • Painting or thermally sprayed metal coating is often used in corrosion protection of steel structures. In recently, duplex coating system which combines thermally sprayed metals with paint is selected as a new generic type of coatings on steel structures under the highly corrosive environments. In this study, the structural steel specimens were surface treated, thermally sprayed with zinc, zinc-15%aluminum alloy, aluminum and aluminum-5%magnesium alloy, and finally sealing or painted with acrylic urethane. And as a reference specimens, steel specimens were painted with acrylic urethane after surface treatment. Circular defects with 1.0, 3.0 and 5.0 mm in diameters and line defect with 2.0 mm width, which reach the steel substrate were created on all specimens. The specimens were exposed into an environmental testing chamber controlled by the ISO 20340, which is a laboratory cyclic accelerated exposure test condition of spraying/UV/low temperature, for up to 175 days. Based on the corrosion tests, corrosion deterioration from the initial defects were evaluated and weathering performance of the specimens are compared.

A study on the micromotion between the dental implant and superstructure (임플란트와 상부구조물 사이의 micromotion에 관한 연구)

  • Kim, Ji-Hye;Song, Kwang-Yeob;Jang, Tae-Yeob;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.1
    • /
    • pp.17-25
    • /
    • 2003
  • Treatment with implants of single tooth missing cases is both functional and esthetic. Although the success rate of single-tooth implant treatments is increasing, sometimes it makes some problems. Problems with single-tooth implant treatments include soft tissue complications, abutment screw fracture, and most commonly, abutment screw loosening, and these involve the instability of the dental implant-superstructure interface. This study investigated and compared dental implant screw joint micromotion of various implant system with external connection or internal connection when tested under simulated clinical loading, Six groups (N=5) were assessed: (1) Branemark AurAdapt (Nobel Biocare, Goteborg, Sweden), (2) Branemark EsthetiCone (Nobel Biocare, Goteborg, Sweden), (3) Neoplant Conical (Neobiotec, Korea), (4) Neoplant UCLA (Neobiotec, Korea), (5) Neoplant 5.5mm Solid (Neobiotec, Korea), and (6) ITI SynOcta (Institute Straumann, Waldenburg, Switzerland). Six identical frameworks were fabricated. Abutment screws were tightened to 32-35 Ncm and occlusal screw were tightened to 15-20 Ncm with an electronic torque controller. A mechanical testing machine applied a compressive cyclic load of 20kg at 10Hz to a contact point on each implant crown. Strain gauge recorded the micromotion of the screw joint interface once a second. Data were selected at 1, 500, 5,000, 10,000, 20,000, 30,000, 40,000 and 50,000 cycle and 2-way ANOVA test was performed to assess the statistical significance. The results of this study were as follows; The micromotion of the implant-superstructure in the interface increased gradually through 50,000 cycles for all implant systems. In the case of the micromotion according to cycle increase, Neoplant Conical and Neoplant UCLA system exhibited significantly increasing micromotion at the implant-superstructure interface (p<0.05), but others not significant. In the case of the micromotion of the implant-superstructure interface at 50,000 cycle, the largest micromotion were recorded in the Branemark EsthetiCone, sequently followed by Neoplant Conical, Neoplant UCLA, Branemark AurAdapt, ITI SynOcta and Neplant Solid. Internal connection system showed smaller micromotion than external connection system. Specially, Neoplant Solid with internal connection system exhibited significantly smaller micromotion than other implant systems except ITI SynOcta with same internal connection system (p<0.05). In the case of external connection, Branemark EsthetiCone and Neoplant Conical system with abutment showed significantly larger micromotion than Branemark AurAdapt without abutment (p<0.05).

Resistance to Corrosion of Reinforcing Steel and Critical Chloride Content of High Volume Fly Ash Concrete (하이볼륨 플라이애시 콘크리트의 철근부식 저항성 및 임계 염화물량)

  • Lee, Hyun-Jin;Bae, Su-Ho;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.375-381
    • /
    • 2017
  • Recently, due to the increasing of interest about the eco-friendly concrete, it is being increased to use concretes containing by-products of industry such as fly ash, ground granulated blast furnace slag, silica fume, and etc. Especially, these are well known for improving the resistance to reinforcement corrosion in concrete and decreasing chloride ion penetration. The purpose of this experimental research is to evaluate the resistance to corrosion of reinforcement and critical chloride content of high volume fly ash concrete(HVFAC) which is replaced with fly ash for approximately 50% cement content. For this purpose, corrosion monitoring of reinforcement by half cell potential method was carried out for the cylindrical test specimens that the upper of reinforcement in concrete was exposed to detect the time of corrosion initiation for reinforcement. It was observed from the test result that the the time of corrosion initiation for reinforcement of HVFAC by the accelerated corrosion tests increased 1.2~1.3 times than plain concrete and the critical chloride contents of plain concrete and HVFAC were found to range $0.80{\sim}1.20kg/m^3$, $0.89{\sim}1.60kg/m^3$, respectively.

In vitro study of the fracture resistance of monolithic lithium disilicate, monolithic zirconia, and lithium disilicate pressed on zirconia for three-unit fixed dental prostheses

  • Choi, Jae-Won;Kim, So-Yeun;Bae, Ji-Hyeon;Bae, Eun-Bin;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.244-251
    • /
    • 2017
  • PURPOSE. The purpose of this study was to determine fracture resistance and failure modes of three-unit fixed dental prostheses (FDPs) made of lithium disilicate pressed on zirconia (LZ), monolithic lithium disilicate (ML), and monolithic zirconia (MZ). MATERIALS AND METHODS. Co-Cr alloy three-unit metal FDPs model with maxillary first premolar and first molar abutments was fabricated. Three different FDPs groups, LZ, ML, and MZ, were prepared (n = 5 per group). The three-unit FDPs designs were identical for all specimens and cemented with resin cement on the prepared metal model. The region of pontic in FDPs was given 50,000 times of cyclic preloading at 2 Hz via dental chewing simulator and received a static load until fracture with universal testing machine fixed at $10^{\circ}$. The fracture resistance and mode of failure were recorded. Statistical analyses were performed using the Kruskal-Wallis test and Mann-Whitney U test with Bonferroni's correction (${\alpha}=0.05/3=0.017$). RESULTS. A significant difference in fracture resistance was found between LZ ($4943.87{\pm}1243.70N$) and ML ($2872.61{\pm}658.78N$) groups, as well as between ML and MZ ($4948.02{\pm}974.51N$) groups (P<.05), but no significant difference was found between LZ and MZ groups (P>.05). With regard to fracture pattern, there were three cases of veneer chipping and two interfacial fractures in LZ group, and complete fracture was observed in all the specimens of ML and MZ groups. CONCLUSION. Compared to monolithic lithium disilicate FDPs, monolithic zirconia FDPs and lithium disilicate glass ceramics pressed on zirconia-based FDPs showed superior fracture resistance while they manifested comparable fracture resistances.

Mechanical strength of Zirconia Abutment in Implant Restoration (지르코니아 임플란트 지대주의 기계적 강도에 관한 연구)

  • Shin, Sung-ae;Kim, Chang-Seop;Cho, Wook;Jeong, Chang-Mo;Jeon, Young-Chan;Yun, Ji-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.349-360
    • /
    • 2009
  • Purpose: As the esthetic demands of dental implant patients are increased, the demands of zirconia as implant abutment material are also increased. It has non-metalic color, good biocompatibility, high strength and high toughness. Even thought the advatage of zirconia abutment, there are a few studies about mechanical properties of zirconia abutment. This study evaluated the mecanical strength with compressive bending strength and endurance limit of implant-zirconia abutment assembly. Materials and Methods: Static and cyclic loading of implant-Zirconia abutment assembly were simulated under worst case condition according to ISO. Test groups were implants of external butt joint with straight regular diameter and angled regular diameter zirconia abutment, implant of external butt joint with narrow straight diameter zirconia abutment and implant of internal conical joint with straight narrow diameter zirconia abutment. All test group were evaluated the mecanical strength with compressive bending strength and endurance limit. After fatique testing, fracture surface were examined by SEM. Results: The compressive bending strengths exceed 927N. Regular diameter zirconia abutment were stronger than narrow diameter zirconia abutment(P<.05). The endurance limits ranged from 503N to 868N. Conclusion: Within the limitation of this study, zirconia implant abutment exceeded the estabilished values for maximum incisal biting forces reported in the literature.

Durability Evaluation on the Air-Braking Release Failure Proof Valve of Cargo Train (화물열차 공기제동 완해불량 방지 밸브의 내구성 평가)

  • Lee, Jun-Ku;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.32-38
    • /
    • 2020
  • Cargo train braking uses the pressure changes in the air braking pipe to operate the braking tightening and releasing service repeatedly. Air-braking release failure means partial braking caused by a failure of the variable load valve after the driver handling the brake release. This phenomenon causes wheel flaws while driving a wagon, resulting in wheel breakage or train derailment. This study developed the air-braking release failure proof valve considering the technical requirements of the railway operation corporations. In addition, a durability test of the valve was carried out using a braking performance simulator, and its operating performance was evaluated from the pneumatic history under cyclic braking conditions. The warranty life of this valve was assessed by performing 160,000 cycles of testing of 12 prototypes in accordance with the zero-failure test method, considering the number of braking cycles while driving the wagon. During the durability test, the pneumatic input time, output time, and release velocity were almost constant. The warranty life of this valve was 59,860 times the 95% confidence level, which means that it can be operated without trouble for four years when the valve is installed in the bogie of the wagon.