• Title/Summary/Keyword: cyclic stress ratio

Search Result 188, Processing Time 0.024 seconds

An experimental investigation on dynamic properties of various grouted sands

  • Hsiao, Darn-Horng;Phan, Vu To-Anh;Huang, Chi-Chang
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.77-94
    • /
    • 2016
  • Cyclic triaxial and resonant column tests were conducted to understand the beneficial effects of various grouted sands on liquefaction resistance and dynamic properties. The test procedures were performed on a variety of grouted sands, such as silicate-grouted sand, silicate-cement grouted sand and cement-grouted sand. For each type of grout, sand specimen was mixed with a 3.5% and 5% grout by volume. The specimens were tested at a curing age of 3, 7, 28 and 91 days, and the results of the cyclic stress ratio, the maximum shear modulus and the damping ratio were obtained during the testing program. The influence of important parameters, including the type of grout, grout content, shear strain, confining pressure, and curing age, were investigated. Results indicated that sodium silicate grout does not improve the liquefaction resistance and shear modulus; however, silicate-cement and cement grout remarkably increased the liquefaction resistance and shear modulus. Shear modulus decreased and damping ratio increased with an increase in the amplitude of shear strain. The effect of confining pressure on clean sand and sodium silicate grouted sand was found to be insignificant. Furthermore, a nonlinear regression analysis was used to prove the agreement of the shear modulus-shear strain relation presented by the hyperbolic law for different grouted sands, and the coefficients of determination, $R^2$, were nearly greater than 0.984.

Nonlinear Analysis of RC Shear Walls under Cyclic Loadings (반복하중을 받는 철근콘크리트 전단벽의 비선형 해석)

  • 곽효경;김도연
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.179-186
    • /
    • 2003
  • This paper describes an extension of a numerical model, which was developed to simulate the nonlinear behavior of reinforced concrete (RC) structures subject to monotonic in-plane shear. While maintaining all the basic assumptions adopted in defining the constitutive relations of concrete under monotonic loadings, a hysteretic stress-strain relation of concrete, which crosses the tension-compression region, is defined. In addition, curved unloading and reloading branches inferred from the stress-strain relation of steel considering the Bauschinger effect are used. Modifications of the stress-strain relation of concrete and steel are also introduced to reflect a pinching effect depending on the shear span ratio and to represent an average stress distribution in a cracked RC element, respectively.

  • PDF

Effects of Anisotropic Consolidation on the Postcyclic Undrained Shear Strength of an Overconsolidated Clay (이방압밀이 반복하중을 받은 과압밀점토의 비배수전단강도에 미치는 영향)

  • Gang, Byeong-Hui;Yun, Hyeong-Seok;Park, Dong-Jin
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.37-48
    • /
    • 1998
  • The effects of consolidation stress history including consolidation stress ratio, OCR and cyclic loading with drainage on the undrained shear strength of cohesive soil were investig toted. The ratio$(S_u/\sigma'_{vc})ckou/(S_U/\sigma_{vc})cuv$ was observed to increase with increasing OCR. The equation (1) in this paper by Mayne(1980) for the undrained shear strength of the overconsolidated clay and the equation (4) by Yasuhara(1994), for the postcyclic shear strength were found to be relatively well applicable in the case of Kofonsolidated. It was also suggested that the value of the critical state pore pressure parameter As in these two equations for the in situ shear strength of lightly overconsolidated clay(OCR< 3) be obtained by the standard consolidating test.

  • PDF

Analysis of shear lag effect in the negative moment region of steel-concrete composite beams under fatigue load

  • Zhang, Jinquan;Han, Bing;Xie, Huibing;Yan, Wutong;Li, Wangwang;Yu, Jiaping
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.435-451
    • /
    • 2021
  • Shear lag effect was a significant mechanical behavior of steel-concrete composite beams, and the effective flange width was needed to consider this effect. However, the effective flange width is mostly determined by static load test. The cyclic vehicle loading cases, which is more practical, was not well considered. This paper focuses on the study of shear lag effect of the concrete slab in the negative moment region under fatigue cyclic load. Two specimens of two-span steel-concrete composite beams were tested under fatigue load and static load respectively to compare the differences in the negative moment region. The reinforcement strain in the negative moment region was measured and the stress was also analyzed under different loads. Based on the OpenSees framework, finite element analysis model of steel-concrete composite beam is established, which is used to simulate transverse reinforcement stress distribution as well as the variation trends under fatigue cycles. With the established model, effects of fatigue stress amplitude, flange width to span ratio, concrete slab thickness and shear connector stiffness on the shear lag effect of concrete slab in negative moment area are analyzed, and the effective flange width ratio of concrete slab under different working conditions is calculated. The simulated results of effective flange width are compared with calculated results of the commonly used specifications, and it is found that the methods in the specifications can better estimate the shear lag effect in concrete slab under static load, but the effective flange width in the negative moment zone under fatigue load has a large deviation.

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.

A Study on the Measuring about the Coefficient of Earth Pressure at Rest 1 (정지토압계수 측정에 관한 연구 1)

  • 송무효
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.92-100
    • /
    • 2001
  • It is very important to determine the coefficient of earth pressure at rest accurately in order to estimate the behavior of soil structure. For estimation of K/sub 0/-value depending upon the stress history of dry sand, a new type of K/sub 0/-oedeometer apparatus is devised, and the horizontal earth pressure is accurately measured. For this study, 2 types of one-cyclic K/sub 0/-Loading/unloading models have been studied experimentally using four relative densities of the sand. The results obtained in this test are as follows : K/sub on'/ the coefficient of earth pressure at - rest for virgin loading is a function of the angle of internal friction Φ' of the sand and is determined as K/sub on/=1 - 0.914 sin Φ', K/sub ou'/ the coefficient of earth pressure at rest for virgin unloading is a function of K/sub on/ and over consolidation ratio(OCR), and is determined as K/sub ou/=K/sub on/(OCR)K/sup a/. The exponent α, increases as the relative density increases. K/sub or'/ the coefficient of earth pressure at rest for virgin reloading decreases in hyperbola type as the vertical stress, σ/sub v/’, increases. And, the stress path at virgin reloading leads to the maximum prestress point, independent upon the value of the minimum unloading stress. The gradient of this curve, m/sub r/ increases as OCR increases.

  • PDF

Dynamic characteristics of combined isolation systems using rubber and wire isolators

  • Lee, Seung-Jae;Truong, Gia Toai;Lee, Ji-Eon;Park, Sang-Hyun;Choi, Kyoung-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1071-1084
    • /
    • 2022
  • The present study aims to investigate the dynamic properties of a novel isolation system composed of separate rubber and wire isolators. The testing program comprised pure compressive, pure-shear, compressive-stress dependence, and shear-strain dependence tests that used full-scale test specimens according to ISO 22762-1. A total of 22 test specimens were fabricated and investigated. Among the tests, the pure compressive test was a destructive test that reached up to the failure stage, whereas the others were nondestructive tests before the failure stage. Similar to the pure-shear test, at each compressive-stress level in the compressive dependence test or at each shear-strain level in the shear-strain dependence test, the cyclic loading was conducted for three cycles. In the nondestructive tests, examination of the dynamic shear properties in the X-direction was independent of the Y-direction. The test results revealed that the increase in the shear strain increased the energy dissipation but decreased the damping ratio, whereas the increase in the compressive stress increased the damping ratio. In addition, a macro model was developed to simulate the load-displacement response of the isolation systems, and the prediction results were consistent with the experimental results.

A Comparison of Behavior of the Roadbeds of Ballasted & Concrete Track with the Cyclic Loading (자갈궤도와 콘크리트궤도에서의 하중재하에 따른 노반거동 비교)

  • Choi, Chan-Yong;Lee, Sung-Heok;Eum, Ki-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2010
  • The track systems installed in Korea railway consist of two types on ballasted track or ballastless track. In this study, it was compared with difference of the behaviors at roadbed with cyclic loading through full scale model test. From the results of model tests, loading distribution ratio of the concrete slab track become more widely distributed than ballasted track, and loading distribution ratio at concrete track was about 30:20:15. The concrete slab track is likely to behavior of the rigid plate, while ballasted track is such as flexible pavement. The vertical stresses of upper roadbed with traffic cyclic loading in concrete track were measured about 30 kPa or less. It was a scene very similar to the results of the field train running test. The vertical stress at concrete track was occurred approximately 4 times smaller than ballasted track. Also, the soil velocities with cyclic loading at the slab track were occurred about 0.3 cm/sec or less, its 8 times smaller than ballasted track.

  • PDF

Characteristics of Hysteretic Behavior of Circular Steel Column using SM490 for Loading Rate (재하속도에 따른 SM490강재 원형강기둥의 이력거동 특성)

  • Jang, Gab Chul;Chang, Kyong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.935-941
    • /
    • 2006
  • The hysteretic behavior of steel structure under cyclic and dynami loading such as earthquake is different to that under static loading. Because structural steels on dynamic deformation is different to static deformation with respect with mechanical characteristics and stress-strain relationship. Therefore, to accurately predict the hysteretic behavior of steel structures such as circular steel columns under cyclic and dynamic loading, the difference of loading carrying capacity and deformation according to loading rate, assumed static and dynamic deformation state, must be investigated. In this study, numerical analyses of circular steel column using SM490 for change of loading rate and diameter-thickness ratio(D/t) were carried out by using three-dimensional elastic-plastic finite element analysis and dynamic cyclic plasticity model of SM490 developed by the authors. Characteristics of hysteretic behavior of circular steel column using SM490, load carrying capacity and energy dissipation ratio, were clarified by analysis results.

A Study of Low Cycle Fatigue Characteristics of 11.7Cr-1.1Mo Heat Resisting Steel with Mean Stress (Mean Stress를 고려한 11.7Cr-1.1Mo강의 고온저주기 피로특성에 관한 연구)

  • Hong, Sang-Hyuk;Hong, Chun-Hyi;Lee, Hyun-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.133-141
    • /
    • 2006
  • The Low cycle fatigue behavior of 11.7Cr-1.1Mo heat-resisting steel has been investigated under strain-controlled conditions with mean stresses at room temperature and $300^{\circ}C$. For the tensile mean stress test, the initial high tensile mean stress generally relaxed to zero at room temperature, however, at $300^{\circ}C$ initial tensile mean stress relaxed to compressive mean stress. Low cycle fatigue lives under mean stress conditions are usually correlated using modifications to the strain-life approach. Based on the fatigue test results from different stain ratio of -1, 0, 0.5, and 0.75 at room temperature and $300^{\circ}C$, the fatigue damage of the steel was represented by using cyclic strain energy density. Total strain energy density considering mean stress indicated well better than not considering mean stress at $300^{\circ}C$. Predicted fatigue life using Smith-Watson-Topper's parameter correlated fairly well with the experimental life at $300^{\circ}C$.