• Title/Summary/Keyword: cyclic shear test

Search Result 430, Processing Time 0.029 seconds

An Experimental Study on the Hysteretic Capacity Evaluation of the Shear-Strengthened RC Column with Carbon Fiber Sheet (탄소섬유쉬트로 전단보강한 RC 기둥의 이력성능평가에 관한 실험적 연구)

  • 이현호;구은숙
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.750-755
    • /
    • 1999
  • When the RC frame structures subjected to the seismic load, brittle shear failure of vertical members induces brittle collapse of whole structures. Failure mechanism like this is not desirable. So shear strengthening method to avoid this failure mechanism is needed. Recently, strengthening method using continuous fiber sheet is studied and used widely which have high elastic and high strength characteristics. In this study, RC columns which is strengthened by carbon fiber sheet in the form of tape or whole sheet were tested under the cyclic load. The parameter of this test is the amount of strengthening. As the amount of strengthening increase, strength, ductility and energy capacity increase. The failure mode of test results are shear and bond-split failure.

  • PDF

Hysteretic Behavoir of Flat Plate System Using Rebar Type Shear Reinforcement (철근형 전단보강근을 사용한 플랫 플레이트 시스템의 이력 거동)

  • Lee, Hyun-Ho;Chun, Young-Soo;Kim, Jin-Soo;Lee, Do-Bum;Kim, Ook-Jong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.55-58
    • /
    • 2005
  • From the development of residential flat plate system, continuously bended shear reinforcements were applied in the joint performance test. The testing parameters are shear reinforcement types, which are no reinforcement, studrail reinforcement, and rebar type reinforcement. To verify the lateral resisting capacity, cyclic load is applied in the constant vertical load condition. From the test results, the resisting capacity of developed shear reinforcement system has a good performance behavior in the story drift ratio.

  • PDF

Shear modulus and stiffness of brickwork masonry: An experimental perspective

  • Bosiljkov, Vlatko Z.;Totoev, Yuri Z.;Nichols, John M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.21-43
    • /
    • 2005
  • Masonry is a composite non-homogeneous structural material, whose mechanical properties depend on the properties of and the interaction between the composite components - brick and mortar, their volume ratio, the properties of their bond, and any cracking in the masonry. The mechanical properties of masonry depend on the orientation of the bed joints and the stress state of the joints, and so the values of the shear modulus, as well as the stiffness of masonry structural elements can depend on various factors. An extensive testing programme in several countries addresses the problem of measurement of the stiffness properties of masonry. These testing programs have provided sufficient data to permit a review of the influence of different testing techniques (mono and bi-axial tests), the variations caused by distinct loading conditions (monotonic and cyclic), the impact of the mortar type, as well as influence of the reinforcement. This review considers the impact of the measurement devices used for determining the shear modulus and stiffness of walls on the results. The results clearly indicate a need to re-assess the values stated in almost all national codes for the shear modulus of the masonry, especially for masonry made with lime mortar, where strong anisotropic behaviour is in the stiffness properties.

Behavior of Fatigue Crack Initition and Growth in S45C Steel Under Biaxial Loading (이축하중을 받는 S45C강의 피로균열의 발생과 성장거동)

  • Park, S.H.;Lee, S.H.;Kim, S.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.206-211
    • /
    • 2000
  • Fatigue test was conducted on a S45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading system, i.e fully reserved cyclic torsion without a superimposed static tension or compression, fully reserved cyclic torsion with a superimposed static tension and fully reserved cyclic torsion with a superimposed static compression were employed. The test results show that a superimposed static tensile mean stress reduced fatigue lifetime. however a superimposed static compressive mean stress increased fatigue lifetime. Experimental results indicated that cracks were initiated on planes of maximum shear strain with either a superimposed mean stresses or not. A biaxial mean stress had an effect on the direction which cracks nucleated and propagated at stage I (mode II).

  • PDF

A Two Mobilized-Plane Model for Soil Liquefaction Analysis (액상화해석을 위한 두 개의 활성면을 가진 구성모델)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.173-181
    • /
    • 2006
  • A Two Mobilized-Plane Model is proposed for monotonic and cyclic soil response including liquefaction. This model is based on two mobilized planes: a plane of maximum shear stress, which rotates, and a horizontal plane which is spatially fixed. By controlling two mobilized planes, the model can simulate the principal stress rotation effect associated with simple shear from different $K_0$ states. The proposed model gives a similar skeleton behaviour for soils having the same mean stress, regardless of $K_0$ conditions as observed in laboratory tests. The soil skeleton behaviour observed in cyclic drained simple shear tests, including compaction during unloading and dilation at large strain is captured in the model. Undrained monotonic and cyclic response is predicted by imposing the volumetric constraint of the water on the drained or skeleton behaviour. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program of FLAC (Fast Lagrangian Analysis of Continua). The model was first calibrated with drained simple shear tests on Fraser River sand, and verified by comparing predicted and measured undrained behaviour of Fraser River sand using the same input parameters.

Undrained cyclic shear characteristics and crushing behaviour of silica sand

  • Wu, Yang;Hyodo, Masayuki;Aramaki, Noritaka
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This paper presents an investigation of the liquefaction characteristics and particle crushing of isotropically consolidated silica sand specimens at a wide range of confining pressures varying from 0.1 MPa to 5 MPa during undrained cyclic shearing. Different failure patterns of silica sand specimens subjected to undrained cyclic loading were seen at low and high pressures. The sudden change points with regard to the increasing double amplitude of axial strain with cycle number were identified, regardless of confining pressure. A higher cyclic stress ratio caused the specimen to liquefy at a relatively smaller cycle number, conversely producing a larger relative breakage $B_r$. The rise in confining pressure also resulted in the increasing relative breakage. At a specific cyclic stress ratio, the relative breakage and plastic work increased with the rise in the cyclic loading. Less particle crushing and plastic work consumption was observed for tests terminated after one cyclic loading. Majority of the particle crushing was produced and majority of the plastic work was consumed after the specimen passed through the phase transformation point and until reaching the failure state. The large amount of particle crushing resulted from the high-level strain induced by particle transformation and rotation.

Dynamic Behavior of Weathered Granite Soils after Freezing-thawing (화강풍화토의 동결-융해 후의 동적 거동)

  • 윤여원;김세은;강병희;강대성
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.69-78
    • /
    • 2003
  • In order to investigate the dynamic behavior of weathered granite soils before and after freezing-thawing, cyclic triaxial tests were conducted for the specimens not only with the variation of silt contents within 20% but with plasticity index within 20%. As the results, the dynamic shear modulus of weathered granite soils decreased with increasing silt contents. However, the change in damping ratio was negligible. The influence of freezing-thawing on shear modulus and damping ratio was minimal for the granite soils with variation of silt contents. For the case of the weathered soils with variation of plasticity index, the shear modulus increased with plasticity index within 20%, while the modulus decreased remarkably after freezing-thawing.

Effects of joint aspect ratio on required transverse reinforcement of exterior joints subjected to cyclic loading

  • Chun, Sung Chul
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.705-718
    • /
    • 2014
  • This paper presents an analytical model for determining the transverse reinforcement required for reinforced concrete exterior beam-column joints subjected to reversed cyclic loading. Although the joint aspect ratio can affect joint shear strength, current design codes do not consider its effects in calculating joint shear strength and the necessary amount of transverse reinforcement. This study re-evaluated previous exterior beam-column joint tests collected from 11 references and showed that the joint shear strength decreases as the joint aspect ratio increases. An analytical model was developed, to quantify the transverse reinforcement required to secure safe load flows in exterior beam-column joints. Comparisons with a database of exterior beam-column joint tests from published literature validated the model. The required sectional ratios of horizontal transverse reinforcement calculated by the proposed model were compared with those specified in ACI 352R-02. More transverse reinforcement is required as the joint aspect ratio increases, or as the ratio of vertical reinforcement decreases; however, ACI 352R-02 specifies a constant transverse reinforcement, regardless of the joint aspect ratio. This reevaluation of test data and the results of the analytical model demonstrate a need for new criteria that take the effects of joint aspect ratio into account in exterior joint design.

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

Experimental Study on Shear Retrofitting of Concrete Columns Using Iron-Based Shape Memory Alloy (철계 형상기억합금을 이용한 콘크리트 기둥의 전단보강 실험연구)

  • Jung, Donghuk;Jeong, Saebyeok;Choi, Jae-Hee;Kim, Geunoh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.41-46
    • /
    • 2024
  • The current study investigates the seismic performance of shear-dominant RC columns retrofitted with iron-based shape memory alloy (Fe SMA). Three RC columns with insufficient transverse reinforcement were designed and fabricated for lateral cyclic loading tests. Before testing, two specimens were externally confined with carbon fiber-reinforced polymer (CFRP) sheets and self-prestressed Fe SMA strips. The test results showed that both CFRP and Fe SMA performed well in preventing severe shear failure exhibited by the unretrofitted control specimen. Furthermore, the two retrofitted specimens showed ductile flexural responses up to the drift ratios of ±8%. In terms of damage control, however, the Fe SMA confinement was superior to CFRP confinement in that the spalling of concrete was much less and that the rupture of confinement did not occur.