• 제목/요약/키워드: cyclic sequencing

검색결과 17건 처리시간 0.024초

혼류 생산시스템의 주기적 생산순서 (Cyclic Sequencing in Mixed-Model Production Systems)

  • 최원준;김연민;박창권;이용일
    • 대한산업공학회지
    • /
    • 제30권4호
    • /
    • pp.317-327
    • /
    • 2004
  • In mixed-model production systems, various models of products are produced alternately on the same production line. When the total number of models or the total production quantity is large, it takes a long time to determine the production sequence of the products. In this paper, we will show that in case of product rate variation problem (PRV) problem with nonidentical symmetric convex discrepancy function, an optimum sequence can be obtained by repeating an optimum sequence in a reduced subproblem.

고리형 에테르의 생물학적 처리 특성 (Removal Characteristics of Cyclic Ethers in Biological Wastewater Treatment System)

  • 이성열;정연구
    • 한국환경과학회지
    • /
    • 제17권3호
    • /
    • pp.343-350
    • /
    • 2008
  • The fate of two cyclic ethers, THF(Tetrahydrofuran) and 1,4-Dioxane, in conventional biological wastewater treatment plants was investigated using sequential activated sludge process. Removal efficiency of THF were about 86% in average, which was greater than that of 1,4-Dioxane, 30%. However, it was not clear whether the removal of cyclic ethers in biological system was caused by microbial activity or not. Thus treatability tests were conducted by batch experiments. The effects of mixing, aeration and the addition of activated sludge on the removal of cyclic ethers were investigated in batch experiments. THF was totally removed by mixing and aeration in 24 hours while removal ratio of 1,4-Dioxane was at most 30% for the same period. This results could be ascribed to the differences in Henry's law constants between the two chemicals. In addition, biological degradation including biosorption was not obviously observed in these batch tests.

Treatment of High Concentration Organic Wastewater with a Sequencing Batch Reactor (SBR) Process Combined with Electro-flotation as a Solids-liquid Separation Method

  • Choi, Younggyun;Park, Minjeong;Park, Mincheol;Kim, Sunghong
    • Environmental Engineering Research
    • /
    • 제19권4호
    • /
    • pp.395-399
    • /
    • 2014
  • Operation characteristics of the sequencing batch reactor (SBR) process with electro-flotation (EF) as a solid liquid separation method (EF-SBR) were investigated. EF-SBR process showed excellent solid-liquid separation performance which enabled to separate biosolids from liquid phase within 30 min and to extend cyclic reaction time. Although influent organic loading rate was increased stepwise from 5 to 15 g COD/day, food to microorganisms (F/M) ratio could be maintained about 0.3 g COD/g VSS/day in EF-SBR because biomass concentration could be easily controlled at desired level by EF. However, it was impossible to increase biomass concentration at the same level in control SBR (C-SBR) process because solid-liquid separation by gravity settling showed a limitation at higher mixed liquor suspended solids (MLSS) concentration with 60 min of settling time. Total chemical oxygen demand (TCOD) removal efficiency of EF-SBR process was not decreased although influent organic loading rate became 3 times higher than initial value. However, it was seriously deteriorated in C-SBR process after increasing the rate over 10 g COD/day, which was accounted for insufficient organic removal by relatively higher food to microorganisms (F/M) ratio as well as biosolids wash-out by a limitation of gravity sedimentation.

Verification of Enhanced Phosphate Removal Capability in Pure Cultures of Acinetobacter calcoaceticus under Anaerobic/Aerobic Conditions in an SBR

  • Kim, Hyung-Jin;Krishna R. Pagilla
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권6호
    • /
    • pp.335-339
    • /
    • 2002
  • Laboratory experiments were conducted using pure cultures of Acinetobacter under an-aerobic/aerobic cyclic conditions to explain the release and uptake of soluble phosphate in an activated sludge process showing enhanced biological phosphate removal (EBPR). Under anaerobic/aerobic cyclic conditions in a Sequencing Batch Reactor (SBR), COD uptake concurrent with soluble phosphate release by Acinetobacter was not significant during the anaerobic periods, indicating that EBPR would not be established in pure cultures. However Acinetobacter cells accumulated higher phosphate content (5.2%) in SBR than that obtained (4.3%) from batch experiments. These results suggest that Acinetobacter sp. may not follow the proposed pattern of behavior of poly-P bacteria in EBPR activated sludge Plants.

SPEEDUP applications in control and optimization of process plant

  • Mushin, D.A.;Ward, P.S.;Pantelides, C.C;Macchietto, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.841-843
    • /
    • 1989
  • Aspects of modelling, performance monitoring, control and optimisation are discussed, with particular reference to the application of SPEEDUP. A new facility is described which allows SPEEDUP to operate in conjunction with other systems and several examples are briefly given of its power and flexibility. In particular, its use in on-line applications alongside plant management and distributed control systems is described and how it can be used in scheduling/sequencing problems in investigating batch and cyclic problems.

  • PDF

교대연속유입식 SBR 공정을 이용한 하수중의 질소 및 인 제거 (Nitrogen and Phosphorus Removal in Domestic Wastewater using SBR Process with Flow Changing Continuous Feed and Cyclic Draw)

  • 서인석;김홍석;김연권;김지연
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.203-208
    • /
    • 2006
  • A continuous feed and cyclic draw SBR process was developed to overcome flow rate fluctuation and to maximize organic matters utilization efficiency for nitrogen and phosphorus removal. The developed SBR process was operated with two parallel reactors. Influent was supplied to one reactor which was not obligately aerated. At the same time, the other reactor was just aerated without supplying influent. In addition this mode was changed periodically. Cycle time was 6hr and aeration time ratio($t_{aer}/t_{total}$) was 0.33, respectively. $COD_{cr}$ and SS removal efficiencies of 95% or higher were achieved. Nitrogen removal was so greatly influenced by influent $COD_{cr}/T-N$ ratio. At influent $COD_{cr}/T-N$ ratio of 5.7, removal efficiencies of ammonia-N, T-N and T-P were 96%, 78% and 55%, respectively. Influent $COD_{cr}/T-N$ of 4 or higher ratio was necessary to achieve 60% or higher nitrogen removal. Organic matters of influent was efficiently utilized in denitrification reaction and consumed COD has a good correlation with removed T-N(about 6.5 mgCOD/mgTN). Continuous feed and cyclic draw SBR process could be one of alternative processes for the removal of nutrients in rural area where $COD_{cr}/T-N$ ratio was low and fluctuation of flow rate was severe.

혐기성 연속 회분식 공정에 의한 도시하수슬러지 소화시 고액분리 특성에 따른 처리효율평가 (Performances of Anaerobic Sequencing Batch Reactor for Digestion of Municipal Sludge at the Conditions of Critical Solid-liquid Separation)

  • Hur, Joon-Moo;Park, Jong-An
    • 한국환경보건학회지
    • /
    • 제28권5호
    • /
    • pp.77-85
    • /
    • 2002
  • 중온과 고온의 혐기성 연속회분식 공정(anaerobic sequencing batch reactor ; ASBR)에서 소화슬러지의 고액분리특성이 처리효율에 미치는 영향을 규명하고자 하였다. 연구결과 침전가능 고형물농도가 높은 도시하수슬러지 처리시 고액분리특성 및 고액분리형태가 전체처리의 안정성 및 처리효율에 상당한 영향을 미쳤다. 중온ASBR에서는 부상농축현상이 일어났으나, 고온ASBR에서는 중력농축에 의한 고액분리가 일어났으며, 상대적으로 고온 ASBR의 처리효율이 우수하였다. 그리고 수리학적 체류시간, cycle period 및 고액분리형태는 소화슬러지의 농축 특성과 임계 고형물농축을 지배하는 중요한 인자였다. 중온ASBR에서 고액분리 후 농축슬러지베드용적(thickened sludge bed volume)은 매우 중요한 운전 요소이며, 소화슬러지의 중력농축특성은 배출시 농축고형물의 유실현상과 침전시 계속적으로 발생하는 소화가스에 의한 슬러지계면의 파괴현상 및 슬러지베드의 불안전성을 야기시켜 처리효율을 감소시켰다. 중력농축의 경우 소화가스와 슬러지농축용적간의 상호작용(cyclic mutual effect)이 주기적으로 일어났으나, 부상농축에서는 이러한 현상이 일어나지 않았다.

Influence of NaCl on the Growth and Metabolism of Halomonas salina

  • YUN , SU-HEE;SANG , BYUNG-IN;PARK, DOO-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.118-124
    • /
    • 2005
  • In this research, we examined the effect of NaCl on the growth, energy metabolism, and proton motive force of Halomonas salina, and the effect of compatible solutes on the bacterium growing in the high salinity environment. H. salina was isolated from seawater and identified by 16srDNA sequencing. The growth of H. salina was not enhanced by the addition of external compatible solutes (choline and betaine) in the high salinity environment. The resting cells of H. salina absorbed more glucose in the presence of 2.0 M NaCl than in its absence. H. salina did not grow in the medium with either KCl, RbCl, CsCl, $Na_2SO_4$, or $NaNO_3$, in place of NaCl. The optimal concentration of NaCl for the growth of H. salina ranged from 1.4 M to 2.5 M, and the growth yield was decreased in the presence of NaCl below 1.4M and above 2.5M. The activity of isocitrate dehydrogenase, pyruvate dehydrogenase, and malate dehydrogenase of H. salina was not inhibited by NaCl in in vitro test. The proton translocation of H. salina was detected in the presence of NaCl only. These results indicate that NaCl is absolutely required for the normal growth and energy metabolism of H. salina, but the bacterial growth is not enhanced by the compatible solutes added to the growth medium.

Molecular Characterization of crp, the Cyclic AMP Receptor Protein Gene of Serratia marcescens KTCC 1272

  • Yoo, Ju-Soon;Kim, Hae-Sun;Chung, Soo-Yeol;Choi, Yong-Lark
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권5호
    • /
    • pp.670-676
    • /
    • 2000
  • Several clones obtained from Serratia marcescens stimulated E. coli TP2139 (${\Delta}lac, \;{\Delta} crp$) cells to use maltose as a carbon source. The crp gene clone, pCKB12, was confirmed to stimulate the $\beta$-galactosidase activity, by Southern hybridization [31]. The nucleotide sequence of the crp region consisting of 1,979 bp was determined. The sequencing of the fragment led to the identification of two open reading frames: One of these, the crp gene, encoded 210 amino acid and the other encoded a truncated protein. The S. marcescens and E. coli crp genes showed a higher degree of divergence in their nucleotide sequence with 120 changes, however, the corresponding amino acid sequences showed only two amino acid differences. Yet, an analysis of the amino acid divergence revealed that the catabolite gene activator protein, the crp gene product, was the most conserved protein observed so far. Using a crp-lac protein fusion, it was demonstrated that S. marcescens CRP could repress its own expression, probably via a mechanism similar to that previously described for the E. coli crp gene.

  • PDF

Hepatic microRNAome reveals potential microRNA-mRNA pairs association with lipid metabolism in pigs

  • Liu, Jingge;Ning, Caibo;Li, Bojiang;Li, Rongyang;Wu, Wangjun;Liu, Honglin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권9호
    • /
    • pp.1458-1468
    • /
    • 2019
  • Objective: As one of the most important metabolic organs, the liver plays vital roles in modulating the lipid metabolism. This study was to compare miRNA expression profiles of the Large White liver between two different developmental periods and to identify candidate miRNAs for lipid metabolism. Methods: Eight liver samples were collected from White Large of 70-day fetus (P70) and of 70-day piglets (D70) (with 4 biological repeats at each development period) to construct sRNA libraries. Then the eight prepared sRNA libraries were sequenced using Illumina next-generation sequencing technology on HiSeq 2500 platform. Results: As a result, we obtained 346 known and 187 novel miRNAs. Compared with the D70, 55 down- and 61 up-regulated miRNAs were shown to be significantly differentially expressed (DE). Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis indicated that these DE miRNAs were mainly involved in growth, development and diverse metabolic processes. They were predicted to regulate lipid metabolism through adipocytokine signaling pathway, mitogen-activated protein kinase, AMP-activated protein kinase, cyclic adenosine monophosphate, phosphatidylinositol 3 kinase/protein kinase B, and Notch signaling pathway. The four most abundantly expressed miRNAs were miR-122, miR-26a and miR-30a-5p (miR-122 only in P70), which play important roles in lipid metabolism. Integration analysis (details of mRNAs sequencing data were shown in another unpublished paper) revealed that many target genes of the DE miRNAs (miR-181b, miR-145-5p, miR-199a-5p, and miR-98) might be critical regulators in lipid metabolic process, including acyl-CoA synthetase long chain family member 4, ATP-binding casette A4, and stearyl-CoA desaturase. Thus, these miRNAs were the promising candidates for lipid metabolism. Conclusion: Our study provides the main differences in the Large White at miRNA level between two different developmental stages. It supplies a valuable database for the further function and mechanism elucidation of miRNAs in porcine liver development and lipid metabolism.