• Title/Summary/Keyword: cyclic representation

Search Result 30, Processing Time 0.031 seconds

Simplified Seismic Response Analysis of a RC Bridge (철근콘크리트 교량의 단순화된 내진응답해석)

  • 이도형;전종수;박대효
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.949-954
    • /
    • 2003
  • In this paper, simplified modeling approach describing the hysteretic behavior of reinforced concrete columns is discussed. The inelastic response of a reinforced concrete column or pier subjected to cyclic deformation reversals or earthquake ground motion is evaluated by use of lumped hysteretic representation. For this purpose, the hystertic model under axial force variation is developed and implemented into a nonlinear finite element analysis program. The analytical predictions obtained with the new formulation are compared with test results and reveal accuracy and applicability in terms of strength and stiffness. In addition, comparison between results with and without axial force variation stresses the importance of the proposed approach.

  • PDF

EFFICIENT PARALLEL GAUSSIAN NORMAL BASES MULTIPLIERS OVER FINITE FIELDS

  • Kim, Young-Tae
    • Honam Mathematical Journal
    • /
    • v.29 no.3
    • /
    • pp.415-425
    • /
    • 2007
  • The normal basis has the advantage that the result of squaring an element is simply the right cyclic shift of its coordinates in hardware implementation over finite fields. In particular, the optimal normal basis is the most efficient to hardware implementation over finite fields. In this paper, we propose an efficient parallel architecture which transforms the Gaussian normal basis multiplication in GF($2^m$) into the type-I optimal normal basis multiplication in GF($2^{mk}$), which is based on the palindromic representation of polynomials.

Local Buckling Behavior of Tapered Members under Cyclic Loading (반복하중을 받는 변단면부재의 국부좌굴 거동)

  • Lee, E.T.;Kim, Jong Won;Park, Ji Hoon;Shim, Ju Yeon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.321-329
    • /
    • 2006
  • The use of tapered structural members was first proposed by Ami rikian for the economical use of materials.Generaly, tapered members are used in single-story structures with one or more bays and in cantilevered sections of ate architectural representation. If only focused on the section performance, however, the width-to-thickness ratio or t apered ratio can exced regulations. Such a case requires a study on the behavior of tapered members. To investigate the plastic and local buckling behavior of web-tapered beams, seven steel beams were the tapered ratio and the width-to-thicknes ratio. The results of maximum strength, strength deterioration, and stiffnes deterioration were compared.

Relevance vector based approach for the prediction of stress intensity factor for the pipe with circumferential crack under cyclic loading

  • Ramachandra Murthy, A.;Vishnuvardhan, S.;Saravanan, M.;Gandhic, P.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.31-41
    • /
    • 2019
  • Structural integrity assessment of piping components is of paramount important for remaining life prediction, residual strength evaluation and for in-service inspection planning. For accurate prediction of these, a reliable fracture parameter is essential. One of the fracture parameters is stress intensity factor (SIF), which is generally preferred for high strength materials, can be evaluated by using linear elastic fracture mechanics principles. To employ available analytical and numerical procedures for fracture analysis of piping components, it takes considerable amount of time and effort. In view of this, an alternative approach to analytical and finite element analysis, a model based on relevance vector machine (RVM) is developed to predict SIF of part through crack of a piping component under fatigue loading. RVM is based on probabilistic approach and regression and it is established based on Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Model for SIF prediction is developed by using MATLAB software wherein 70% of the data has been used for the development of RVM model and rest of the data is used for validation. The predicted SIF is found to be in good agreement with the corresponding analytical solution, and can be used for damage tolerant analysis of structural components.

Low Cycle Fatigue Characteristics of A356 Cast Aluminum Alloy and Fatigue Life Models (주조 알루미늄합금 A356의 저주기 피로특성 및 피로수명 모델)

  • 고승기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.131-139
    • /
    • 1993
  • Low cycle fatigue characteristics of cast aluminum alloy A356 with a yield strength and ultimate strength of 229 and 283 MPa respectively was evaluated using smooth axial specimen under strain controlled condition. Reversals to failure ranged from 16 to 107. The cast aluminum alloy exhibited cyclically strain-gardening behavior. The results of low cycle fatigue tests indicated that the conventional low cycle fatigue tests indicated that the conventional low cycle fatigue life model was not a satisfactory representation of the data. This occurred because the elastic strain-life curve was not-log-log linear and this phenomena caused a nonconservative and unsafe fatigue life prediction at both extremes of long and short lives. A linear log-log total strain-life model and a bilinear log-log elastic strain-life model were proposed in order to improve the representation of data compared to the conventional low cycle fatigue life model. Both proposed fatigue life models were statistically analyzed using F tests and successfully satisfied. However, the low cycle fatigue life model generated by the bilinear log-log elastic strain-life equation yielded a discontinuous curve with nonconservatism in the region of discontinuity. Among the models examined, the linear log-log total strain-life model provided the best representation of the low cycle fatigue data. Low cycle fatigue life prediction method based on the local strain approach could conveniently incorporated both proposed fatigue life models.

  • PDF

Calculation of Rebar Stress at Splice Failure of RC Columns (RC 기둥의 겹침이음파괴 시 철근의 응력 산정)

  • Cho, Jae-Yeol;Pincheira, Jose A.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.446-449
    • /
    • 2006
  • Several experimental investigations have been carried out to study the behavior of reinforced concrete columns with short lap splices. However, very few analytical models have been developed for the analysis of such columns subjected to earthquakes. As nonlinear analysis procedures become more common in practice (such as those outlined in the Guidelines for Seismic Rehabilitation of Buildings published by the Federal Emergency Management Agency in the United States), the need for an accurate and reliable representation of the nonlinear response of strength degrading systems becomes more important. In this study, an analytical model for estimating the complete response of reinforced concrete columns with short lap splices is presented. The model is based on local bond stress-slip relationships and is validated against independent experimental data from cyclic loading tests on reinforced concrete columns with typical construction details of the 1960s. In this paper a simple equation for calculating the bar stress at splice failure is presented. Use of the proposed equation resulted in excellent agreement between the measured and calculated strength at splice failure.

  • PDF

Hardening slip model for reinforcing steel bars

  • Braga, Franco;Caprili, Silvia;Gigliotti, Rosario;Salvatore, Walter
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.503-539
    • /
    • 2015
  • A new constitutive model for the representation of the seismic behaviour of steel bars including hardening phenomena is presented. The model takes into account relative slip between bars and concrete, necessary for the estimation of the structural behaviour of r.c. elements and of the level of strain induced by earthquakes on bars. The present work provides the analytical formulation of the post-yielding behaviour of reinforcements, resulting in a continuous axial stress-slip relationship to be implemented in engineering software. The efficacy of the model is proved through the application to a cantilever column, for whose bars the constitutive law is derived.

Geotechnical Hybrid Simulation System for the Quantitative Prediction of the Residual Deformation in the Liquefiable Sand During and After Earthquake Motion (액상화 가능 지반의 진동 도중 및 후의 잔류 변형에 대한 정량적 예측을 위한 하이브리드 시뮬레이션 시스템)

  • Kwon, Young Cheul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.43-52
    • /
    • 2006
  • Despite several constitutive models have been proposed and applied, it is still difficult to choose a suitable model and to estimate adequate analysis parameters. Furthermore, a cyclic shear behavior under the volume change caused by the seepage is more complex. None of the constitutive model is available at present in the expression of the cyclic behavior of soil under an additional volume change condition by seepage. Therefore, a new geotechnical hybrid simulation system which can control the pore water immigration was developed. The system enables a quantitative evaluation of the residual deformation such as lateral spreading and settlement caused by the liquefaction. The seismic responses in a one-dimensional slightly inclined multilayered soil system are taken into consideration, and the soils are governed by both equation of motion and the continuity equation. Furthermore, the estimation and the selection of the soil parameter for the representation of the strong nonlinearity of the material are not required, because soil behaviors under the earthquake motions are directly introduced instead of a numerical soil constitutive model. This paper presents the concept and specifications of the system. By applying the system to an example problem, the permeability effect on the seismic response during cyclic shear is studied. The importance of the volume change characteristics of sandy soil during and after cyclic shear is shown in conclusion.

Representation of Collective Memory and Records : Reality Reading Based on Triple Mimesis (기록과 기억의 재현 삼중의 미메시스로 실재읽기)

  • Moon, Hyang Gi;Kim, Ik Han
    • The Korean Journal of Archival Studies
    • /
    • no.69
    • /
    • pp.153-187
    • /
    • 2021
  • Narrative runs through the entire human life. 'Narrative' is a means of understanding and experiencing human life. The past, the present and the future are not disconnected. The past is open to the future. The future defines the meaning of the past, and the past rreturn as the horizon of life. Past, present and future temporality functions as a Narrative. Records reproduce the past time as Narrative, and recount the past according to reading behavior. Reality and records complement each other with a cyclic and dialectic structure. This paper examines the relationship between reality and records. This paper applies Paul Ricoeur's Hermeneutics to records as a tool to examine the relationship between reality and record. We want to look at how records interpret and relates to reality, and how social justice of collective memory should be should be achieved against them.

Characteristics of Pre-service Teachers' PCK in the Activities of Content Representation of Boiling Point Elevation (끓는점 오름에 대한 내용표상화(Content Representation) 활동에서 나타난 예비교사의 PCK 특징)

  • Lee, Young Min;Hur, Chinhyu
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.7
    • /
    • pp.1385-1402
    • /
    • 2013
  • This study analyzes pre-service teachers' PCK dealing with visualization of the contents related to boiling point elevation and teaching methods in mock-lessons. As a result of analyzing pre-service teachers' knowledge based on PCK factors, most of the pre-service teachers accentuated on understanding boiling point elevation conceptually, whereas some of the others inclined to make students understand boiling point elevation in a scientific way, let the kids use numerical formulas to describe the concept, and motivate them to learn through the examples in real life. The pre-service teachers represented majority of the important facts of boiling point elevation as the knowledge required to understand things conceptually. However, they did not focus on improving the scientific thinking and inquiring levels of the students. Also, the pre-service teachers tended to teach at the level and order of the textbook. In some other cases, they considered the vocabularies and materials in the textbook (which could have been highlighted in the editing sequence) as the main topic to learn, or regarded the goal as giving students the ability to solve exercises in the textbook. It turned out that the pre-service teachers had a low level of knowledge of their students. It is recommended that they should make use of the materials given (such as data related to the misconception of students) during the training session. The knowledge of teaching and evaluating students was described superficially by the pre-service teachers; they merely mentioned the applications of models, such as the cyclic model and discovery learning, rather than thinking of a method related to the goals, or listed general assessment methods.