• 제목/요약/키워드: cyclic bending test

검색결과 138건 처리시간 0.033초

Design of Composite Multilayer Surface Antenna Structure and Its Bending Fatigue Characteristics

  • Moon, Tae-Chul;Hwang, Woon-Bong
    • Advanced Composite Materials
    • /
    • 제17권3호
    • /
    • pp.215-224
    • /
    • 2008
  • The present study aims to design a multilayer microstrip antenna with composite sandwich construction and investigate fatigue behavior of this multilayer SAS (surface antenna structure) that was asymmetric sandwich structure for the next generation of structural surface technology. This term, SAS, indicates that the structural surface becomes an antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, antenna elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.2 GHz. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of the SAS was obtained. The experimental results of bending fatigue were compared with single load level fatigue life prediction equations and in good agreement. The SAS concept is can be extended to give a useful guide for manufacturers of structural body panels as well as antenna designers.

브래킷형 완전강접합 모듈러 시스템의 반복가력실험과 해석적 평가 (Cyclic Loading Test and an Analytical Evaluation of the Modular System with Bracket-typed Fully Restrained Moment Connections)

  • 박재성;강창훈;손수덕;이승재
    • 대한건축학회논문집:구조계
    • /
    • 제34권3호
    • /
    • pp.19-28
    • /
    • 2018
  • Key factors that ensure competitiveness of modular unit include consistent high quality and connection condition that ensures high structural performance while minimizing the overall scale of the on-site process. However, it is difficult to evaluate the structural performance of the connection of modular unit, and its structural analysis and design method can be different depending on the connection to its development, which affects the seismic performance of its final design. In particular, securing the seismic performance is the key to designing modular systems of mid-to-high-rise structure. In this paper, therefore, the seismic performance of the modular system with bracket-typed fully restrained moment connections according to stiffness and the shapes of various connection members was evaluated through experimental and analytical methods. To verify the seismic performance, a cyclic loading test of the connection joint of the proposed modular system was conducted. As a result of this study, theoretical values and experimental results were compared with the initial stiffness, hysteresis behavior and maximum bending moment of the modular system. Also, the connection joint was modeled, using the commercial program ANSYS, which was then followed by finite element analysis of the system. According to the results of the experiment, the maximum resisting force of the proposed connection exceeded the theoretical parameters, which indicated that a rigid joint structural performance could be secured. These results almost satisfied the criteria for connection bending strength of special moment frame listed on KBC2016.

반복하중을 받는 모듈러 슬래브의 거동 및 단면2차모멘트 평가 (Evaluation of Structural Behavior and Moment of Inertia on Modular Slabs Subjected to Cyclic Loading)

  • 박종호;최진웅;이홍명;박선규;홍성남
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권6호
    • /
    • pp.95-102
    • /
    • 2015
  • 최근 교량의 노후화에 따른 유지관리 활동이 교통체증, 환경오염, 막대한 비용의 소모로 인하여 어려움을 겪으면서 조립식교량 공법을 이용하는 모듈러 교량 연구가 진행 중이다. 본 연구는 모듈러 교량과 관련된 연구의 일환으로 연결부를 가지는 1방향 모듈러 슬래브를 대상으로 반복하중 재하시 단면2차모멘트의 변화를 분석하고 콘크리트구조기준의 유효단면2차모멘트 식과 비교하였다. 반복하중 재하 실험을 위하여 일체형, 모듈러 실험체 각각 1개씩을 제작하였다. 실험결과, 모듈러 실험체는 일체형 실험체의 비슷한 휨 성능을 가지고 있었으나, 극한 변위는 20% 부족한 모습을 보였다. 반복하중 재하 실험에서는 모듈러 실험체는 일체형 실험체와는 상이한 처짐 거동을 보였고 단면2차모멘트의 변화가 상이하였다. 또한 콘크리트구조기준의 유효단면2차모멘트 계산식은 모듈러 슬래브의 단면2차모멘트를 적절히 반영하지 못하고 있음을 확인하였고, 실험값을 기반으로 하중과 균열모멘트의 비율을 새로운 값인 4.53을 구하였다.

송전철탑의 풍응답 감소를 위한 마찰형 보강기구의 에너지 소산특성 분석 실험 (Experimental Investigation on the Energy Dissipation of Friction-type Reinforcing Members Installed in a Transmission Tower for Wind Response Reduction)

  • 박지훈;문병욱;이성경;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.568-577
    • /
    • 2007
  • Friction-type reinforcing members (FRM) to enhance the resistance to wind loads of a transmission tower through both stiffness strengthening and damping increase are energy dissipation devices that utilize bending deflection of a tower leg. In this paper, the hysteretic behavior of the transmission tower structure with FRMs was experimentally investigated through cyclic loading tests on a half scale substructure model. Firstly, the variation of friction forces and durability of the FRM depending on the type of Friction-inducing materials used in the FRM were examined by performing the cyclic loading tests on the FRM. Secondly, Cyclic loading tests of a half-scale two-dimensional substructure model of a transmission tower with FRMs were conducted. Test results show that the FRM, of which desired maximum friction force is easily regulated by adjusting the amplitude of the torque applied to the bolts, have stable hysteretic behaviors and it is found that there exists the optimum torque depending on a design load by investigating the amount of energy dissipation of the FRMs according to the increase of torque.

  • PDF

Experimental and numerical analyses on axial cyclic behavior of H-section aluminium alloy members

  • Wu, Jinzhi;Zheng, Jianhua;Sun, Guojun;Chang, Xinquan
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.11-28
    • /
    • 2022
  • This paper considers the combination of cyclic and axial loads to investigate the hysteretic performance of H-section 6061-T6 aluminum alloy members. The hysteretic performance of aluminum alloy members is the basis for the seismic performance of aluminum alloy structures. Despite the prevalence of aluminum alloy reticulated shells structures worldwide, research into the seismic performance of aluminum alloy structures remains inadequate. To address this deficiency, we design and conduct cyclic axial load testing of three H-section members based on a reliable testing system. The influence of slenderness ratios and bending direction on the failure form, bearing capacity, and stiffness degradation of each member are analyzed. The experiment results show that overall buckling dominates the failure mechanism of all test members before local buckling occurs. As the load increases after overall buckling, the plasticity of the member develops, finally leading to local buckling and fracture failure. The results illustrate that the plasticity development of the local buckling position is the main reason for the stiffness degradation and failure of the member. Additionally, with the increase of the slenderness ratio, the energy-dissipation capacity and stiffness of the member decrease significantly. Simultaneously, a finite element model based on the Chaboche hybrid strengthening model is established according to the experiment, and the rationality of the constitutive model and validity of the finite element simulation method are verified. The parameter analysis of twenty-four members with different sections, slenderness ratios, bending directions, and boundary conditions are also carried out. Results show that the section size and boundary condition of the member have a significant influence on stiffness degradation and energy dissipation capacity. Based on the above, the appropriate material constitutive relationship and analysis method of H-section aluminum alloy members under cyclic loading are determined, providing a reference for the seismic design of aluminum alloy structures.

Experimental study on the seismic performance of concrete filled steel tubular laced columns

  • Huang, Zhi;Jiang, Li-Zhong;Chen, Y. Frank;Luo, Yao;Zhou, Wang-Bao
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.719-731
    • /
    • 2018
  • Concrete filled steel tubular (CFST) laced columns have been widely used in high rise buildings in China. Compared to solid-web columns, this type of columns has a larger cross-section with less weight. In this paper, four concrete filled steel tubular laced columns consisting of 4 main steel-concrete tubes were tested under cyclic loading. Hysteresis and failure mechanisms were studied based on the results from the lateral cyclic loading tests. The influence of each design parameter on restoring forces was investigated, including axial compression ratio, slenderness ratio, and the size of lacing tubes. The test results show that all specimens fail in compression-bending-shear and/or compression-bending mode. Overall, the hysteresis curves appear in a full bow shape, indicating that the laced columns have a good seismic performance. The bearing capacity of the columns decreases with the increasing slenderness ratio, while increases with an increasing axial compression ratio. For the columns with a smaller axial compression ratio (< 0.3), their ductility is increased. Furthermore, with the increasing slenderness ratio, the yield displacement increases, the bending failure characteristic is more obvious, and the hysteretic loops become stouter. The results obtained from the numerical analyses were compared with the experimental results. It was found that the numerical analysis results agree well with the experimental results.

녹차잎분말을 사용한 마루판의 특성 (Characteristics of Fancy Veneer Plywood Floor using Green Tea Leaves Powder)

  • 강석구;이화형
    • 한국가구학회지
    • /
    • 제21권4호
    • /
    • pp.284-292
    • /
    • 2010
  • This research was carried out to examine the properties of fancy cherry veneer overlaid on the PF resin bonded Meranti plywood floor, which 2.5% green tea leaf powder was applied in the UV varnishes and the adhesives for scavenging the volatile organic compounds. The results were as follows: 1. The various properties of the treated samples, such as density, moisture content, thickness swelling, bending strength(MOR), adhesion shear strength, surface abrasion, curling, cyclic delamination test with boiling water, boiling property, cold-resistance and heat resistance, acid resistance and alkali resistance, and anti-contamination property showed no significant difference between the properties of the control samples. 2.5% green tea leaf powder treated floor gave a little better results than the control for surface scratch test. 2. In case of QUV and weathering test, no difference between the treated sample and control was found. 3. The floor was discolored by adding 10% green tea leaf powder to UV coating, and the floor was also discolored to light green during by the soaking test. The color of floor was not changed up to 5% addition level.

  • PDF

Steel Cord와 PVA 혼합섬유 보강 고인성 시멘트 복합체의 인장강도 특성 (Tensile Strength Characteristics of Steel Cord and PVA Hybrid Fiber Reinforced Cement-Based Composites)

  • 윤현도;양일승;한병찬;복산양;전에스더;문연준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.18-21
    • /
    • 2004
  • This paper discusses how steel cord and PVA hybrid fibers enhance the performance of high performance fiber reinforced cementitious composites (HPRFCC) in terms of elastic limit, strain hardening response and post peak of the composites. The effect of microfiber(PVA) blending ratio is presented. For this purpose flexure, direct tension and split tension tests were conducted. It was found that HFRCC specimen shows multiple cracking in the area subjected to the greatest bending tensile stress. Uniaxial tensile test confirms the range of tensile strain capacity from 0.5 to $1.5\%$ when hybrid fiber is used. The cyclic loading test results identified a unique unloading and reloading response for this ductile composite. Cyclic loading in tension appears not to affect the tensile response of the material if the uniaxial compressive strength during loading is not exceeded.

  • PDF

자동차 유압브레이크용 고무호스의 내구성 시험 및 미세손상에 관한 연구 (Durability Test and Micro-Damage Formation of Rubber Hose for Automotive Hydraulic Brake)

  • 곽승범;최낙삼;임영한
    • Composites Research
    • /
    • 제21권1호
    • /
    • pp.40-45
    • /
    • 2008
  • 자동차용 유압브레이크 고무호스 어셈블리 제품은 자동차에 장착되어 실제로 사용 중에 가압, 굽힘, 비틀림, 열하중 등의 복합적인 스트레스를 받는다. 고무호스의 재질은 EPDM(ethylene-propylene diene monomer)고무와 PVA(polyvinyl acetate)섬유 보강층 그리고 중간고무로 NR(natural rubber)고무가 사용되고 있다. 고무호스 어셈블리 제품의 내구성과 파괴 메커니즘을 조사하기 위해 굽힘과 비틀림의 반복하중 사이클 수가 10만, 20만, 30만, 40만, 최종파열 사이클 수까지 되도록 시험하였다. 유압브레이크 고무호스의 초기크랙 발생을 알아보기 위해 제품 시험편을 다이아몬드 휠커터를 이용하여 수직 절단하여 폴리싱한 후 광학현미경과 주사형 전자현미경(SEM)으로 단면을 관찰하였다. 40만 사이클의 피로하중을 받은 시험편을 보면 외면고무와 PVA섬유 사이의 계면을 따라 길이 1mm의 층간분리가 일어났으며, 이러한 손상은 외면고무의 표피층으로 균열을 진전시켜 고무호스를 최종적으로 찢어지게 하는 것이다.

복합재료 표면안테나 구조의 굽힘 피로특성 연구 (Bending Fatigue Characteristics of Surface-Antenna-Structure)

  • 김동현;황운봉;박현철;박위상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1647-1650
    • /
    • 2003
  • The Objective of this work was to design Surface Antenna Structure (SAS) and investigate fatigue behavior of SAS that was asymmetric sandwich structure. This term, SAS, indicates that structural surface becomes antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, SSFIP elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.5 GHz and final demonstration article was 16${\times}$8 array antenna. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue lift curve of SAS was obtained. The fatigue load was determined experimentally at a 0.75(1.875kN) load level. SAS concept is the first serious attempt at integration for both antenna and composite engineers and promises innovative future communication technology.

  • PDF