• Title/Summary/Keyword: cyclic architecture

Search Result 312, Processing Time 0.027 seconds

An Experimental Study on Failure Behavior of TP316 Stainless Steel Pipe with Local Wall Thinning and Cracking (국부 감육과 균열이 발생한 TP316 스테인리스강 배관의 파괴거동에 관한 실험적 연구)

  • Cheung, Jin Hwan;Kim, In Tae;Choi, Seock Jin;Choi, Hyung Suk;Kim, Hee Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.647-657
    • /
    • 2012
  • Although nuclear power plant piping system is designed conforming to design specifications, the piping systems are deteriorated with increase in service life. In this study, monotonic and cyclic loading tests were carried out on TP316 stainless steel pipe specimens, and the effect of local wall thinning and cracking on failure behavior was investigated. In the tests, 0%, 35% and 75% wall thinning and cracking of initial thickness were artificially introduced to inside elbow and straight pipe specimens, and internal pressures of 20MPa were applied to simulate real operation condition. From the test results, the effect of local wall thinning and cracking on failure mode, ultimate load, number of cycle and strain energy was presented, and maximum bending moment was compared with allowable bending moment calculated by ASME code.

Hysteresis Behavior of Partially Restrained Smart Connections for the Seismic Performance of Composite Frame (CFT 합성골조의 내진성능을 위한 스마트 반강접합의 이력거동)

  • Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.99-108
    • /
    • 2015
  • The partially restrained smart CFT (concrete filled tube) column-to-beam connections with top-seat split T connections show various behavior characteristics according to the changes in the diameter and tightening force of the fastener, the geometric shape of T-stub, and material properties. This paper presents results from a systematic three-dimensional nonlinear finite element study on the structural behavior of the top-seat split T connections subjected to cyclic loadings. This connection includes super-elastic shape memory alloy (SMA) T-stub and rods to obtain the re-centering capabilities as well as great energy dissipation properties of the CFT composite frame. A wide scope of additional structural behaviors explain the influences of the top-seat split T connections parameters, such as the different thickness and gage distances of split T-stub.

Experimental Study on the Similitude of Small-Scale Models in Cyclic Lateral Behaviors of RC Shear Wall Subassemblages (RC벽식 부분구조의 반복 횡하중 거동에서의 축소모델 상사성 실험연구)

  • Lee, Han-Seon;Cho, Chang-Seok;Lee, Sang-Ho;Oh, Sang-Hoon;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.805-816
    • /
    • 2010
  • For earthquake simulation test it is essential to make sure the similitude in behaviors between the full scale prototype and the reduced scale model. This paper presents the test results obtained through the cyclic lateral-force test, on two-story RC wall subassemblages. A lower 2-story portion of the prototype structure was selected as subassemblages. The global behavior such as the strength and ductility, and the local behavior such as flexural, shear and uplift deformation were measured. The test results of the 3 : 5 scale specimens representing the prototype were compared with those of 1 : 7 scale models. Two types of subassemblages were used: One with lintel beams and one without lintel beams. The comparison shows that 1 : 7 scale model simulated in general successfully the global and local behaviors of the prototype.

A MIMO LTE Precoding Codebook Based on Fast Diagonal Weighted Matrices (고속 대각 하중 행렬을 이용한 MIMO LTE 프리코딩 코드북)

  • Park, Ju-Yong;Peng, Bu Shi;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.3
    • /
    • pp.14-26
    • /
    • 2012
  • In this paper, a fast diagonal-weighted Jacket matrices (DWJMs) is proposed to have the orthogonal architecture. We develop the successive DWJM to reduce the computational load while factorizing the large-order DWJMs into the low-order sparse matrices with the fast algorithms. The proposed DWJM is then applied to the precoding multiple-input and multiple output (MIMO) wireless communications because of its diagonal-weighted framework with element-wise inverse characteristics. Based on the properties of the DWJM, the DWJM can be used as alternative open loop cyclic delay diversity (CDD) precoding, which has recently become part of the cellular communications systems. Performance of the DWJM-based precoding system is verified for orthogonal space-time block code (OSTBC) MIMO LTE systems.

Studies on In Vitro Fertilizability of Mouse Oocytes Pre-exposed to Dibutyryl Cyclic AMP (Dibutyryl Cyclic AMP로 처리된 생쥐난자의 수정능에 관한 연구)

  • 강해묵;이영기;조완규
    • The Korean Journal of Zoology
    • /
    • v.31 no.1
    • /
    • pp.21-28
    • /
    • 1988
  • The present study was carried out to examine the fertilizability of the mouse oocytes pre-ex-posed to dbcAMP which is a well-known inhibitor of the oocyte maturation. The oocytes once cultured in the dbcMP-containing medium for a certain length of, time were cultivated in the dbcMp-free medium to induced the maturation, then mixed with sperms, and observed following culture for 24 hours. The fertilization rate of cocytes was judged by the index of the number of 2-cell embryo developed 24hr following insemination. The fertilization rate of the oocyte previously incubated with dbcAMP (100 g/ml) for 2, 4, 8 16 hours was 32.3, 14.5, 4.7 and 8.8%, respectively, while that of the control was 53.3% indicating that the fertilizability was decreased as a function of time exposed to dbcAMP. The pretreatment of dbcMP, however, didn't affect the process of sperm penetration to egg. In addition, there is no prominent changes in the morphological architecture of fertielized eggs which has been exposed to dbcAMP as revealed by electron microscopic observation. Consequendy, it can be concluded that the mouse cocytes once inhibited their maturation by dbcMP may retain, in some extent, the fertilizability, although most of the fertilized egg may not proceed to further development because of the failure of pronucleus formation.

  • PDF

Short-term fatigue analysis for tower base of a spar-type wind turbine under stochastic wind-wave loads

  • Li, Haoran;Hu, Zhiqiang;Wang, Jin;Meng, Xiangyin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.9-20
    • /
    • 2018
  • Due to integrated stochastic wind and wave loads, the supporting platform of a Floating Offshore Wind Turbine (FOWT) has to bear six Degrees of Freedom (DOF) motion, which makes the random cyclic loads acting on the structural components, for instance the tower base, more complicated than those on bottom-fixed or land-based wind turbines. These cyclic loads may cause unexpected fatigue damages on a FOWT. This paper presents a study on short-term fatigue damage at the tower base of a 5 MW FOWT with a spar-type platform. Fully coupled time-domain simulations code FAST is used and realistic environment conditions are considered to obtain the loads and structural stresses at the tower base. Then the cumulative fatigue damage is calculated based on rainflow counting method and Miner's rule. Moreover, the effects of the simulation length, the wind-wave misalignment, the wind-only condition and the wave-only condition on the fatigue damage are investigated. It is found that the wind and wave induced loads affect the tower base's axial stress separately and in a decoupled way, and the wave-induced fatigue damage is greater than that induced by the wind loads. Under the environment conditions with rated wind speed, the tower base experiences the highest fatigue damage when the joint probability of the wind and wave is included in the calculation. Moreover, it is also found that 1 h simulation length is sufficient to give an appropriate fatigue damage estimated life for FOWT.

Seismic Performance of RC Frame System Retrofitted with TS Seismic Strengthening Method (Part 1:Analytical Study) (TS 제진공법으로 내진보강된 철근콘크리트 골조의 내진성능(Part 1:해석적 연구))

  • Jung, Myung-Cheol;Song, Jeong-Weon;Song, Jin-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.141-147
    • /
    • 2018
  • In this study, a cyclic loading test was carried out for a reinforced concrete frame installed a TS(tension-spring) damper for the purpose of verifying the seismic strengthening effect of the TS seismic reinforcing method. The test specimens are four specimens of non - reinforced frame and three reinforced frame specimens. Experimental parameters are Shape of damper and construction method of damper. As a result, the construction method of inserting type inside window was twice as much in terms of strength and stiffness, and the method of externally attached type showed a performance improvement of about 2 times in terms of energy dissipation. From these results, it can be confirmed that the TS seismic reinforcing method is a superior method for field application and seismic strengthening.

Evaluations of Swaging Process for Rotor Core of Induction Motors II (유도전동기 회전자 제작시 압입작업 평가 II)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.464-469
    • /
    • 2017
  • This study evaluated the displacements of a Cu bar in the Y-direction and the relationship between swaging pressures and total contact forces to increase the productivity of the rotor core swaging process. Elastic-plastic numerical analyses of four different Cu bar shapes were performed with a constant swaging pressure to evaluate the displacements of the Cu bar in the Y-direction and the contact force distributions at the contact surfaces during the swaging process. Based on the numerical analysis results, the following conclusions were obtained. First, a simplified 2-dimensional cyclic symmetric analysis model was developed for the numerical analysis of the rotor core swaging process. Second, the final displacements of the Cu bar in the Y-direction were nearly the same as the change of the Cu bar size at a constant swaging pressure. Third, a linear relationship between the swaging pressures and the total contact forces, the so called resistance forces, was suggested.

Reversed Cyclic Loading Test of Post-Tensioned Precast Concrete Beam-Column Connections with 2400MPa Prestressing Strands (2400MPa 긴장재가 적용된 포스트텐션 프리캐스트 콘크리트 보-기둥 접합부의 반복가력실험)

  • Hwang, Jin-Ha;Choi, Seung-Ho;Lee, Deuck Hang;Kim, Kang Su;Woo, Woon Tack
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.45-52
    • /
    • 2017
  • The precast concrete (PC) method has many advantages in fast construction, quality control, etc. In domestic construction market, however, its application has been quite limited because of the concerns about structural integrity and seismic performances due to the discrete connections between precast concrete members. By applying the post-tensioning method, the precast beam-column connection can be well tightened, allowing improved structural integrity, and proper seismic performances can be also achieved. In this study, reversed cyclic tests have been conducted on the beam-column connection specimens, where the test variables included the compressive strength of grouting mortar and the tensile strengths of prestressing strands, based on which their seismic performances have been examined in detail. The post-tensioned PC beam-column connections showed good seismic performances comparable to that of the monolithic reinforced concrete connection specimen. When 2400 MPa prestressing strands are applied to the beam-column connection, it is preferable to adjust the prestress level similar to that applied for the 1860 MPa prestressing strands to avoid premature local crushing failures at the beam-column connections.

Behavior of Steel Fiber-Reinforced Concrete Exterior Connections under Cyclic Loads (반복하중을 받는 강섬유 보강 철근콘크리트 외부 접합부의 거동 특성)

  • Kwon, Woo-Hyun;Kim, Woo-Suk;Kang, Thomas H.K.;Hong, Sung-Gul;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.711-722
    • /
    • 2011
  • Beam-column gravity or Intermediate Moment frames subjected to unexpected large displacements are vulnerable when no seismic details are provided, which is typical. Conversely, economic efficiency of those frames is decreased if unnecessary special detailing is applied as the beam and column size becomes quite large and steel congestion is caused by joint transverse reinforcement in beam-column connections. Moderate seismic design is used in Korea for beam-column connections of buildings with structural walls, which are to be destroyed when the unexpected large earthquake occurs. Nonetheless, performance of such beamcolumn connections may be substantially improved by the addition of steel fibers. This study was conducted to investigate the effect of steel fibers in reinforced concrete exterior beam-column connections and possibility for the replacement of some joint transverse reinforcement. Ten half-scale beam-column connections with non-seismic details were tested under cyclic loads with two cycles at each drift up to 19 cycles. Main test parameters used were the volume ratio of steel fibers (0%, 1%, 1.5%) and joint transverse reinforcement amount. The test results show that maximum capacity, energy dissipation capacity, shear strength and bond condition are improved with the application of steel fibers to substitute transverse reinforcement of beam-column connections. Furthermore, several shear strength equations for exterior connections were examined, including the proposed equation for steel fiber-reinforced concrete exterior connections with non-seismic details.