• Title/Summary/Keyword: cyclic actions

Search Result 61, Processing Time 0.022 seconds

SUBGROUP ACTIONS AND SOME APPLICATIONS

  • Han, Juncheol;Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.181-189
    • /
    • 2011
  • Let G be a group and X be a nonempty set and H be a subgroup of G. For a given ${\phi}_G\;:\;G{\times}X{\rightarrow}X$, a group action of G on X, we define ${\phi}_H\;:\;H{\times}X{\rightarrow}X$, a subgroup action of H on X, by ${\phi}_H(h,x)={\phi}_G(h,x)$ for all $(h,x){\in}H{\times}X$. In this paper, by considering a subgroup action of H on X, we have some results as follows: (1) If H,K are two normal subgroups of G such that $H{\subseteq}K{\subseteq}G$, then for any $x{\in}X$ ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_H}(x)$) = ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_K}(x)$) = ($orb_{{\phi}_K}(x)\;:\;orb_{{\phi}_H}(x)$); additionally, in case of $K{\cap}stab_{{\phi}_G}(x)$ = {1}, if ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}H}(x)$) and ($orb_{{\phi}_K}(x)\;:\;orb_{{\phi}_H}(x)$) are both finite, then ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_H}(x)$) is finite; (2) If H is a cyclic subgroup of G and $stab_{{\phi}_H}(x){\neq}$ {1} for some $x{\in}X$, then $orb_{{\phi}_H}(x)$ is finite.

Bryonia alba and Its Biochemical, Pharmacological Actions and Toxicity

  • Lee, Dong Wook;Aprikian, G.V.;Sohn, Hyung-Ok
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.35 no.1
    • /
    • pp.56-61
    • /
    • 2013
  • Bryonia alba L. belongs to the Cucurbitaceae family and grows in Europe, Asia, America, Africa, Russia, Ukraina and Armenia. The root of Bryonia alba has been used for neuropsychical diseases, psychosis, hysteria, paralysis, epilepsy, vertigo, headache, migrain, melancholia, forgetfulness, sadness, absent mindedness, delirium, cardiovascular disease, ischemia, gastrointestinal diseases, gastric ulcer and respiratory diseases. The root of Bryonia alba contains an oxidized tetra cyclic triterpens, cucurbitaceous, polyunsaturated hydrocarbons, phospholipids, phosphatidylcholines, ethereal oils, fatty acids, a great amount of amino acids, alcohol soluble enzymes, sugar, carotene, vitamin C and E. Bryonia alba increases coronary blood-flow and the amplitude of cardiac contractions. Bryonia alba has an antistressor action and increases the working capacity. Bryonia alba activates connective tissue cells. Bryonia alba markedly increases the oxygen consumption by young and senescent rat brain, liver as well as heart mitochondrial fraction as Korean Ginseng. Bryonia alba decreases lipid peroxidation after immobilization stress. In conclusion, Bryonia alba like Ginseng used in traditional medicine came from ancient time has a good perspective administration as prophylactic and medical remedy, as remedy of lot of diseases in modern medicine.

Restoration of pre-damaged RC bridge columns using basalt FRP composites

  • Fahmy, Mohamed F.M.;Wu, Zhishen
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.379-388
    • /
    • 2018
  • This study aims to identify the effect of both longitudinal reinforcement details and damage level on making a decision of repairing pre-damaged bridge columns using basalt fiber reinforced polymer (BFRP) jackets. Two RC bridge columns with improper details of the longitudinal and/or transverse reinforcement were tested under the effect of a constant axial load and increasing lateral cyclic loading. Test results showed that the lap-splice column exhibited an inferior performance where it showed rapid degradation of strength before achieving the theoretical strength and its deformation capacity was limited; however, quick restoration is possible through a suitable rehabilitation technique. On the other hand, expensive repair or even complete replacement could be the decision for the column with the confinement failure mode. After that, a rehabilitation technique using external BFRP jacket was adopted. Performance-based design details guaranteeing the enhancement in the inelastic performance of both damaged columns were addressed and defined. Test results of the repaired columns confirmed that both reparability and the required repairing time of damage structures are dependent on the reinforcement details at the plastic hinge zone. Furthermore, lap-splice of longitudinal reinforcement could be applied as a key design-tool controlling reparability and restorability of RC structures after massive actions.

Luteal Prostaglandin F2α: New Concepts of Prostaglandin F2α Secretion and Its Actions within the Bovine Corpus Luteuma - Review -

  • Okuda, K.;Skarzynski, D.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.3
    • /
    • pp.390-400
    • /
    • 2000
  • The corpus luteum (CL) is a temporary endocrine gland whose main function is to secrete progesterone to support pregnancy. On the other hand, the cyclic bovine CL has also been shown to be a site of prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$) production. Although there is general agreement that endometrial $PGF_{2{\alpha}}$ is an essential luteolysin in cattle, luteal $PGF_{2{\alpha}}$ seems to play a luteotropic role as an autocrine and/or paracrine factor, especially for the development and maintenance of the CL. This supposition is based on evidence that some of the prerequisites for autocrine/paracrine mechanisms are present, including local production of $PGF_{2{\alpha}}$ and the existence of specific binding sites within the CL. The purpose of this paper is to review the regulation of luteal $PGF_{2{\alpha}}$ secretion, its action on CL as an autocrine and/or paracrine factor and the receptivity of bovine CL to. $PGF_{2{\alpha}}$.

Rotational capacity of shallow footings and its implication on SSI analyses

  • Blandon, Carlos A.;Smith-Pardo, J. Paul;Ortiz, Albert
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.591-617
    • /
    • 2015
  • Standards for seismic assessment and retrofitting of buildings provide deformation limit states for structural members and connections. However, in order to perform fully consistent performance-based seismic analyses of soil-structure systems; deformation limit states must also be available for foundations that are vulnerable to nonlinear actions. Because such limit states have never been established in the past, a laboratory testing program was conducted to study the rotational capacity of small-scale foundation models under combined axial load and moment. Fourteen displacement-controlled monotonic and cyclic tests were performed using a cohesionless soil contained in a $2.0{\times}2.0{\times}1.2m$ container box. It was found that the foundation models exhibited a stable hysteretic behavior for imposed rotations exceeding 0.06 rad and that the measured foundation moment capacity complied well with Meyerhof's equivalent width concept. Simplified code-based soil-structure analyses of an 8-story building under an array of strong ground motions were also conducted to preliminary evaluate the implication of finite rotational capacity of vulnerable foundations. It was found that for the same soil as that of the experimental program foundations would have a deformation capacity that far exceeds the imposed rotational demands under the lateral load resisting members so yielding of the soil may constitute a reliable source of energy dissipation for the system.

Variable amplitude fatigue test of M30 high-strength bolt in bolt-sphere joint grid structures

  • Qiu, Bin;Lei, Honggang;Yang, Xu;Zhou, Zichun;Wang, Guoqing
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.433-444
    • /
    • 2019
  • Fatigue failure of a grid structure using bolt-sphere joints is liable to occur in a high-strength bolt due to the alternating and reciprocal actions of a suspension crane. In this study, variable amplitude fatigue tests were carried out on 20 40 Cr steel alloy M30 high-strength bolts using an MTS fatigue testing machine, and four cyclic stress amplitude loading patterns, Low-High, High-Low, Low-High-Low, and High-Low-High, were tested. The scanning electron microscope images of bolt fatigue failure due to variable amplitude stress were obtained, and the fractographic analysis of fatigue fractures was performed to investigate the fatigue failure mechanisms. Based on the available data from the constant amplitude fatigue tests, the variable amplitude fatigue life of an M30 high-strength bolt in a bolt-sphere joint was estimated using both Miner's rule and the Corten-Dolan model. Since both cumulative damage models gave similar predictions, Miner's rule is suggested for estimating the variable-amplitude fatigue life of M30 high-strength bolts in a grid structure with bolt-sphere joints; the S-N fatigue curve of the M30 high-strength bolts under variable amplitude loading was derived using equivalent stress amplitude as a design parameter.

Degradation of roller compacted concrete subjected to low-velocity fatigue impacts and salt spray cycles

  • Gao, Longxin;Lai, Yong;Zhang, Huigui;Zhang, Jingsong;Zhang, Wuman
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.411-418
    • /
    • 2021
  • Roller compacted concrete (RCC) used in the island reef airport runway will be subjected to the coupling actions of the fatigue impacts and the salt spray cycles, which will accelerate the deterioration of runway concrete and even threaten the flight safety. A cyclic impact testing machine and a climatic chamber were used to simulate the low-velocity fatigue impact and the salt spray cycles, respectively. The physical properties, the microstructures and the porosity of RCC were investigated. The results show the flexural strength firstly increases and then decreases with the increase of the fatigue impacts and the salt spray cycles. However, the decrease in the flexural strength is significantly earlier than the compressive strength of RCC only subjected to the salt spray cycles. The chlorine, sulfur and magnesium elements significantly increase in the pores of RCC subjected to 30000 fatigue impacts and 300 salt spray cycles, which causes the decrease in the porosity of RCC. The coupling effects of the fatigue impacts and the salt spray cycles in the later period accelerates the deterioration of RCC.

Seismic behavior of reinforced concrete column-steel beam joints with and without reinforced concrete slab

  • Tong Li;Jinjie Men;Huan Li;Liquan Xiong
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.417-430
    • /
    • 2023
  • As the key part in the reinforced concrete column-steel beam (RCS) frame, the beam-column joints are usually subjected the axial force, shear force and bending moment under seismic actions. With the aim to study the seismic behavior of RCS joints with and without RC slab, the quasi-static cyclic tests results, including hysteretic curves, slab crack development, failure mode, strain distributions, etc. were discussed in detail. It is shown that the composite action between steel beam and RC slab can significantly enhance the initial stiffness and loading capacity, but lead to a changing of the failure mode from beam flexural failure to the joint shear failure. Based on the analysis of shear failure mechanism, the calculation formula accounting for the influence of RC slab was proposed to estimate shear strength of RCS joint. In addition, the finite element model (FEM) was developed by ABAQUS and a series of parametric analysis model with RC slab was conducted to investigate the influence of the face plates thickness, slab reinforcement diameter, beam web strength and inner concrete strength on the shear strength of joints. Finally, the proposed formula in this paper is verified by the experiment and FEM parametric analysis results.

Regulation of Prolactin Secretion: Dopamine is the Prolactin-release Inhibiting Factor (PIF), but also Plays a Role as a Releasing Factor (PRF)

  • Shin, Seon H.;Song, Jin-Hyang;Ross, Gregory M.
    • Animal cells and systems
    • /
    • v.3 no.2
    • /
    • pp.103-113
    • /
    • 1999
  • Many in-depth reviews related to regulations of prolactin secretion are available. We will, therefore, focus on controversial aspects using personal opinion in this review. The neuroendocrine control of prolactin secretion from the anterior pituitary gland involves multiple factors including prolactin-release inhibiting factor (PIF) and prolactin releasing factor (PRF). The PIF exerts a tonic inhibitory control in the physiological conditions. The PIF should be able to effectively inhibit prolactin release or a lifetime, but the inhibitory action of dopamine cannot be sustained for a long period of time. Perifusion of a high concentration of dopamine (l ,000 nM) could not sustain inhibitory action on prolactin release but when a small amount of ascorbic acid (0.1 mM) is added in a low concentration of dopamine (3 nM) solution, prolactin release was inhibited for a long period. Ascorbate is essential for dopamine action to inhibit prolactin release. We have, therefore, concluded that the PIF is dopamine plus ascorbate. The major transduction system for dopamine to inhibit prolactin release is the adenylyl cyclase system. Dopamine decreases cyclic AMP concentration by inhibiting adenylyl cyclase, and cyclic AMP stimulates prolactin release. However, the inhibitory mechanism of dopamine on prolactin release is much more complex than simple inhibition of CAMP production. The dopamine not only inhibits cyclic AMP synthesis but also inhibits prolactin release by acting on a link(s) after the CAMP event in a chain reaction for inhibiting prolactin release. Low concentrations of dopamine stimulate prolactin release. Lactotropes are made of several different subtypes of cells and several different dopamine receptors are found in pituitary. The inhibitory and stimulatory actions induced by dopamine can be generated by different subtype of receptors. The GH$_4$ZR$_7$ cells express only the short isoform (D$_{2s}$) of the dopamine receptor, as a result of transfecting the D$_{2s}$ receptors into GH$_4$C$_1$ cells which do not express any dopamine receptors. When dopamine stimulates or inhibits prolactin release in GH$_4$ZR$_7$ cells, it is clear that the dopamine should act on dopamine D$_{2s}$ receptors since there is no other dopamine receptor in the GH$_4$ZR$_7$. Dopamine is able to stimulate prolactin release in a relatively low concentration while it inhibits in a high concentration in GH$_4$ZR$_7$. These observations indicate that the dopamine D$_2$ receptor can activate stimulatory and/or inhibitory transduction system depending upon dopamine concentrations.

  • PDF

Improvement of Earthquake-Resistant Performance of R/C Beam-Column Joint Constructed with High-Strength Concrete Subjected to Cyclic Loading (고강도 철근콘크리트 보-기둥 접합부의 내진성능 개선에 관한 실험적 연구)

  • Ha, Gee-Joo;Kim, Jin-Keun;Chung, Lan
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.135-145
    • /
    • 1992
  • With the increasing tendency to construct high rise reinforced concrete building~i, it is required to use high strength materIals, smaller member sections, and larger reinforcing bars, I t is generally recognized that under severe seismic loads beam column jomts may become more critical structural components than other structural elements. In a ductile momentresistmg reinforced concrete frame, the connection of bearncolumn must be capable of resistll1g the large lateral forces caused by seismic actions, The purpose of this experimental study is to evaluate and ll1vestigate the earthquake resistant perform ance of beam-colurrm subassemblies constructed with high-strength concrete cast by the concrete of com¬pressive strength of 700kg / cm2 subjected to reversed cyclic loadings. New approaches for moving the plastic hinging zone away from the column face and preventing the di¬agonal crack in the joint region are adopted to advance the earthquake-resistant performance of beam-column subassemblies using high-strengh concrete under severe earthquake-type loading. Exper¬imental results indicate that the modified new details which are introduced by intermediate reinforcement in the beam over a specific beam length adjacent to the joint are able to attain the stable hysteretic behavior and the enhancement of earthquake-resistant performance. Keywords: high strength concrete: beam-column Joints; seirnic loads(reversed cyclic loading) : earth¬quake-resistant performance; plastic hinge zone: diagonal crack: intermediate reinforce¬ment ; closed strirrup: hysteretic behavior: enhancement .