• 제목/요약/키워드: cyclic AMP-binding protein

검색결과 51건 처리시간 0.028초

The Facile and Efficient Synthesis of 8-Chloroadenosine $3^I,5^I$-cyclic monophosphate by phosphorylative cyclization of 8-chloroadenosine and its characterization by$^1 H and 13^C$ NMR spectroscopy

  • Woo, Nam-Tae;Jin, Sun-Yong;Cho, Dae-Jin;Kim, Nam-Sun;Bae, Eun-Hyung;Jung, Jee-Hyung;Ham, Won-Hun;Jung, Young-Hoon
    • Archives of Pharmacal Research
    • /
    • 제20권2호
    • /
    • pp.176-179
    • /
    • 1997
  • Purine nucleosides were chlorinated by the reaction of acyl chloride in DMF with MCPBA under mild conditions with moderate yields. And, satisfactory method for the synthesis of ribonucleoside-$3^{I},5^{I}$-cyclic phosphates and its characterization by$^{1}H$ and $^{13}C$ nmr spectroscopy is described.

  • PDF

Predominant $D_1$ Receptors Involvement in the Over-expression of CART Peptides after Repeated Cocaine Administration

  • Hu, Zhenzhen;Oh, Eun-Hye;Chung, Yeon Bok;Hong, Jin Tae;Oh, Ki-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권2호
    • /
    • pp.89-97
    • /
    • 2015
  • The aim of this study was to investigate the involvement of dopaminergic receptors (DR) in behavioral sensitization, as measured by locomotor activity, and the over-expression of cocaine- and amphetamine-regulated transcript (CART) peptides after repeated administration of cocaine in mice. Repeated administrations of cocaine induced behavioral sensitization and CART over-expression in mice. The levels of striatal CART mRNA were significantly increased on the $3^{rd}$ day. CART peptides were over-expressed on the $5^{th}$ day in the striata of behaviorally sensitized mice. A higher proportion of $CART^+$ cells in the cocaine-treated mice were present in the nucleus accumbens (NAc) shell than in the dorsolateral (DL) part of caudate putamen (CP). The concomitant administration of both $D_1R$ and $D_2R$ antagonists, SCH 23390 ($D_1R$ selective) and raclopride ($D_2R$ selective), blocked cocaine induced-behavioral sensitization, CART over-expression, and cyclic adenosine 5'-monophosphate (cAMP)/ protein kinase A (PKA)/phospho-cAMP response element-binding protein (pCREB) signal pathways. SCH 23390 more predominantly inhibited the locomotor activity, CART over-expression, pCREB and PKA activity than raclopride. Cocaine induced-behavioral sensitization was also attenuated in the both $D_1R$ and $D_2R$ knockout (KO) mice, respectively. CART over-expression and activated cAMP/PKA/pCREB signal pathways were inhibited in the $D_1R$-KO mice, but not in the $D_2R$-KO mice. It is suggested that behavioral sensitization, CART over-expression and activated cAMP/PKA/pCREB signal pathways induced by repeated administration of cocaine could be more predominantly mediated by $D_1R$.

Effects of (-)-Sesamin on Dopamine Biosynthesis in PC12 Cells

  • Park, Hyun Jin;Lee, Kyung Sook;Zhao, Ting Ting;Lee, Seung Ho;Shin, Keon Sung;Park, Keun Hong;Lee, Myung Koo
    • Natural Product Sciences
    • /
    • 제20권4호
    • /
    • pp.296-300
    • /
    • 2014
  • The present study investigated the effects of (-)-sesamin on dopamine biosynthesis in PC12 cells. Treatment with (-)-sesamin (25 and $50{\mu}M$) increased intracellular dopamine levels and enhanced L-DOPA-induced increase in dopamine levels in PC12 cells. (-)-Sesamin (25 and $50{\mu}M$) also induced the phosphorylation of cyclic AMP-dependent kinase A (PKA), cyclic AMP-response element binding protein (CREB) and tyrosine hydroxylase (TH) in PC12 cells. These results suggest that (-)-sesamin induces dopamine biosynthesis via the PKA-CREB-TH pathways in PC12 cells. (-)-Sesamin needs to be studied further to serve as an adjuvant phytonutrient in neurodegenerative disease.

Elucidation of the Regulation of Ethanol Catabolic Genes and ptsG Using a glxR and Adenylate Cyclase Gene (cyaB) Deletion Mutants of Corynebacterium glutamicum ATCC 13032

  • Subhadra, Bindu;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권12호
    • /
    • pp.1683-1690
    • /
    • 2013
  • The cyclic AMP receptor protein (CRP) homolog, GlxR, controls the expression of several genes involved in the regulation of diverse physiological processes in Corynebacterium glutamicum. In silico analysis has revealed the presence of glxR binding sites upstream of genes ptsG, adhA, and ald, encoding glucose-specific phosphotransferase system protein, alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH), respectively. However, the involvement of the GlxR-cAMP complex on the expression of these genes has been explored only in vitro. In this study, the expressions of ptsG, adhA, and ald were analyzed in detail using an adenylate cyclase gene (cyaB) deletion mutant and glxR deletion mutant. The specific activities of ADH and ALDH were increased in both the mutants in glucose and glucose plus ethanol media, in contrast to the wild type. In accordance, the promoter activities of adhA and ald were derepressed in the cyaB mutant, indicating that glxR acts as a repressor of adhA. Similarly, both the mutants exhibited derepression of ptsG regardless of the carbon source. These results confirm the involvement of GlxR on the expression of important carbon metabolic genes; adhA, ald, and ptsG.

Inhibitory Effects of Cordycepin on Platelet Activation via Regulation of Cyclic Adenosine Monophosphate-downstream Pathway

  • Lee, Dong-Ha
    • 대한의생명과학회지
    • /
    • 제23권3호
    • /
    • pp.251-260
    • /
    • 2017
  • Platelet activation is essential at the sites of vascular injury, which leads to hemostasis through adhesion, aggregation, and secretion process. However, potent and continuous platelet activation may be an important reason of circulatory disorders. Therefore, proper regulation of platelet activation may be an effective treatment for vascular diseases. In this research, inhibitory effects of cordycepin (3'-deoxyadenosine) on platelet activation were determined. As the results, cordycepin increased cAMP and cGMP, which are intracellular $Ca^{2+}$-antagonists. In addition, cordycepin reduced collagen-elevated $[Ca^{2+}]_i$ mobilization, which was increased by a cAMP-dependent protein kinase (PKA) inhibitor (Rp-8-Br-cAMPS), but not a cGMP-protein kinase (PKG) inhibitor (Rp-8-Br-cGMPS). Furthermore, cordycepin increased $IP_3RI$ ($Ser^{1756}$) phosphorylation, indicating inhibition of $IP_3$-mediated $Ca^{2+}$ release from internal store via the $IP_3RI$, which was strongly inhibited by Rp-8-Br-cAMPS, but was not so much inhibited by Rp-8-Br-cGMPS. These results suggest that the reduction of $[Ca^{2+}]_i$ mobilization is caused by the cAMP/A-kinase-dependent $IP_3RI$ ($Ser^{1756}$) phosphorylation. In addition, cordycepin increased the phosphorylation of VASP ($Ser^{157}$) known as PKA substrate, but not VASP ($Ser^{239}$) known as PKG substrate. Cordycepin-induced VASP ($Ser^{157}$) phosphorylation was inhibited by Rp-8-Br-cAMPS, but was not inhibited by Rp-8-Br-cGMPS, and cordycepin inhibited collagen-induced fibrinogen binding to ${\alpha}IIb/{\beta}_3$, which was increased by Rp-8-Br-cAMPS, but was not inhibited by Rp-8-Br-cGMPS. These results suggest that the inhibition of ${\alpha}IIb/{\beta}_3$ activation is caused by the cAMP/A-kinase-dependent VASP ($Ser^{157}$) phosphorylation. In conclusion, these results demonstrate that inhibitory effects of cordycepin on platelet activation were due to inhibition of $[Ca^{2+}]_i$ mobilization through cAMP-dependent $IP_3RI$ ($Ser^{1756}$) phosphorylation and suppression of ${\alpha}IIb/{\beta}_3$ activation through cAMP-dependent VASP ($Ser^{157}$) phosphorylation. These results strongly indicated that cordycepin might have therapeutic or preventive potential for platelet activation-mediated disorders including thrombosis, atherosclerosis, myocardial infarction, or cardiovascular disease.

Feedback Control of Cyclooxygenase-2 Expression by Prostaglandin E2 in Rheumatoid Synoviocytes

  • Min, So-Youn;Jung, Young Ok;Do, Ju-Ho;Kim, So-Yang;Kim, Jeong-Pyo;Cho, Chul-Soo;Kim, Wan-Uk
    • IMMUNE NETWORK
    • /
    • 제3권3호
    • /
    • pp.201-210
    • /
    • 2003
  • Objective: The role of prostaglandin $E_2$ (PGE2) in the etiopathogenesis of immune and inflammatory diseases has become the subject of recent debate. To determine the role of PGE2 in rheumatoid arthritis (RA), we tested the effect of exogenous PGE2 on the production of cyclooxygenase-2 (COX-2) by rheumatoid synoviocytes. Methods: Fibroblast-like synoviocytes (FLS) were prepared from the synovial tissues of RA patients, and cultured in the presence of PGE2. The COX-2 mRNA and protein expression levels were determined by RT-PCR and Western blot analysis, respectively. The PGE2 receptor subtypes in the FLS were analyzed by RT-PCR. Electrophoretic mobility shift assay (EMSA) was used to measure the NF-${\kappa}B$ binding activity for COX-2 transcription. The in vivoeffect of PGE2 on the development of arthritis was also tested in collagen induced arthritis (CIA) animals. Results: PGE2 ($10^{-11}$ to $10^{-5}M$) dose-dependently inhibited the expression of COX-2 mRNA and the COX-2 protein stimulated with IL-$1{\beta}$, but not COX-1 mRNA. NS-398, a selective COX-2 inhibitor, displayed an additive effect on PGE2-induced COX-2 downregulation. The FLS predominantly expressed the PGE2 receptor (EP) 2 and EP4, which mediated the COX-2 suppression by PGE2. Treatment with anti-IL-10 monoclonal antibodies partially reversed the PGE2-induced suppression of COX-2 mRNA, suggesting that IL-10 may be involved in modulating COX-2 by PGE2. Experiments using an inducer and an inhibitor of cyclic AMP (cAMP) suggest that cAMP is the major intracellular signal that mediates the regulatory effect of PGE2 on COX-2 expression. EMSA revealed that PGE2 inhibited the binding of NF-${\kappa}B$ in the COX-2 promoter via a cAMP dependent pathway. In addition, a subcutaneous injection of PGE2 twice daily for 2 weeks significantly reduced the incidence and severity of CIA as well as the production of IgG antibodies to type II collagen. Conclusion: Our data suggest that overproduced PGE2 in the RA joints may function as an autocrine regulator of its own synthesis by inhibiting COX-2 production and may, in part, play an anti-inflammatory role in the arthritic joints.

Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling

  • Jiang, Tao;Wang, Xiu-qin;Ding, Chuan;Du, Xue-lian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.579-589
    • /
    • 2017
  • Anesthetics are used extensively in surgeries and related procedures to prevent pain. However, there is some concern regarding neuronal degeneration and cognitive deficits arising from regular anesthetic exposure. Recent studies have indicated that brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB) are involved in learning and memory processes. Genistein, a plant-derived isoflavone, has been shown to exhibit neuroprotective effects. The present study was performed to examine the protective effect of genistein against isoflurane-induced neurotoxicity in rats. Neonatal rats were exposed to isoflurane (0.75%, 6 hours) on postnatal day 7 (P7). Separate groups of rat pups were orally administered genistein at doses of 20, 40, or 80 mg/kg body weight from P3 to P15 and then exposed to isoflurane anesthesia on P7. Neuronal apoptosis was detected by TUNEL assay and FluoroJade B staining following isoflurane exposure. Genistein significantly reduced apoptosis in the hippocampus, reduced the expression of proapoptotic factors (Bad, Bax, and cleaved caspase-3), and increased the expression of Bcl-2 and Bcl-xL. RT-PCR analysis revealed enhanced BDNF and TrkB mRNA levels. Genistein effectively upregulated cAMP levels and phosphorylation of CREB and TrkB, leading to activation of cAMP/CREB-BDNF-TrkB signaling. PI3K/Akt signaling was also significantly activated. Genistein administration improved general behavior and enhanced learning and memory in the rats. These observations suggest that genistein exerts neuroprotective effects by suppressing isoflurane-induced neuronal apoptosis and by activating cAMP/CREB-BDNF-TrkB-PI3/Akt signaling.

Tunicamycin negatively regulates BMP2-induced osteoblast differentiation through CREBH expression in MC3T3E1 cells

  • Jang, Won-Gu;Kim, Eun-Jung;Koh, Jeong-Tae
    • BMB Reports
    • /
    • 제44권11호
    • /
    • pp.735-740
    • /
    • 2011
  • Tunicamycin, an endoplasmic reticulum (ER) stress inducer, specifically inhibits N-glycosylation. The cyclic AMP (cAMP) response element-binding protein H (CREBH) was previously shown to be regulated by UPR-dependent proteolytic cleavage in the liver. On the other hand, the role of CREBH in other tissues is unknown. In the present study, tunicamycin increased the level of CREBH activation (cleavage) as well as mRNA expression in osteoblast cells. Adenoviral (Ad) overexpression of CREBH suppressed BMP2-induced expression of alkaline phosphatase (ALP) and osteocalcin (OC). Interestingly, the BMP2-induced OASIS (structurally similar to CREBH, a positive regulator of osteoblast differentiation) expression was also inhibited by CREBH overexpression. In addition, inhibition of CREBH expression using siRNA reversed the tunicamycin-suppressed ALP and OC expression. These results suggest that CREBH inhibited osteoblast differentiation via suppressing BMP2-induced ALP, OC and OASIS expression in mouse calvarial derived osteoblasts.

Tanshinone I, an Active Ingredient of Salvia miltiorrhiza, Inhibits Differentiation of 3T3-L1 Preadipocytes and Lipid Accumulation in Zebrafish

  • Kwon, Hyo-Shin;Jang, Byeong-Churl
    • 한방비만학회지
    • /
    • 제20권2호
    • /
    • pp.109-121
    • /
    • 2020
  • Objectives: Tanshinone I is a bioactive constituent in Salvia miltiorrhiza. At present, the anti-obesity effect and mechanism of tanshinone I are not fully understood. Here we investigated the effect of tanshinone I on lipid accumulation in 3T3-L1 preadipocytes and zebrafish. Methods: Lipid accumulation and triglyceride (TG) content in 3T3-L1 cells were determined by Oil Red O staining and AdipoRed assay, respectively. The expression and phosphorylation levels of adipogenic/lipogenic proteins in 3T3-L1 cells were evaluated by Western blotting. The messenger RNA (mRNA) expression levels of adipogenic/lipogenic markers and leptin in 3T3-L1 cells were measured by reverse transcription polymerase chain reaction (RT-PCR). Lipid accumulation in zebrafish was assessed by LipidGreen2 staining. Results: Tanshinone I at 5 μM largely blocked lipid accumulation and reduced TG content in differentiating 3T3-L1 cells. Furthermore, tanshinone I decreased the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and perilipin A but also the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. In addition, tanshinone I increased the phosphorylation of adenosine 3',5'-cyclic monophosphate (cAMP)-activated protein kinase (AMPK) while decreased the intracellular adenosine triphosphate (ATP) content with no change in the phosphorylation and expression of liver kinase-B1 in differentiating 3T3-L1 cells. Importantly, tanshinone I also reduced the extent of lipid deposit formation in developing zebrafish. Conclusions: These findings demonstrate that tanshinone I has strong anti-adipogenic effects on 3T3-L1 cells and reduces adiposity in zebrafish, and these anti-adipogenic effect in 3T3-L1 cells are mediated through control of C/EBP-α, PPAR-γ, STAT-3, FAS, ACC, perilipin A, and AMPK.

Cyclic AMP response element binding (CREB) protein acts as a positive regulator of SOX3 gene expression in NT2/D1 cells

  • Kovacevic-Grujicic, Natasa;Mojsin, Marija;Popovic, Jelena;Petrovic, Isidora;Topalovic, Vladanka;Stevanovic, Milena
    • BMB Reports
    • /
    • 제47권4호
    • /
    • pp.197-202
    • /
    • 2014
  • SOX3 is one of the earliest neural markers in vertebrates, playing the role in specifying neuronal fate. In this study we have established first functional link between CREB and human SOX3 gene which both have important roles in the nervous system throughout development and in the adulthood. Here we demonstrate both in vitro and in vivo that CREB binds to CRE half-site located -195 to -191 within the human SOX3 promoter. Overexpression studies with CREB or its dominant-negative inhibitor A-CREB indicate that this transcription factor acts as a positive regulator of basal SOX3 gene expression in NT2/D1 cells. This is further confirmed by mutational analysis where mutation of CREB binding site results in reduction of SOX3 promoter activity. Our results point at CREB as a positive regulator of SOX3 gene transcription in NT2/D1 cells, while its contribution to RA induction of SOX3 promoter is not prominent.