Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.11.735

Tunicamycin negatively regulates BMP2-induced osteoblast differentiation through CREBH expression in MC3T3E1 cells  

Jang, Won-Gu (Dental Science Research Institute and BK21, School of Dentistry, Chonnam National University)
Kim, Eun-Jung (Dental Science Research Institute and BK21, School of Dentistry, Chonnam National University)
Koh, Jeong-Tae (Dental Science Research Institute and BK21, School of Dentistry, Chonnam National University)
Publication Information
BMB Reports / v.44, no.11, 2011 , pp. 735-740 More about this Journal
Abstract
Tunicamycin, an endoplasmic reticulum (ER) stress inducer, specifically inhibits N-glycosylation. The cyclic AMP (cAMP) response element-binding protein H (CREBH) was previously shown to be regulated by UPR-dependent proteolytic cleavage in the liver. On the other hand, the role of CREBH in other tissues is unknown. In the present study, tunicamycin increased the level of CREBH activation (cleavage) as well as mRNA expression in osteoblast cells. Adenoviral (Ad) overexpression of CREBH suppressed BMP2-induced expression of alkaline phosphatase (ALP) and osteocalcin (OC). Interestingly, the BMP2-induced OASIS (structurally similar to CREBH, a positive regulator of osteoblast differentiation) expression was also inhibited by CREBH overexpression. In addition, inhibition of CREBH expression using siRNA reversed the tunicamycin-suppressed ALP and OC expression. These results suggest that CREBH inhibited osteoblast differentiation via suppressing BMP2-induced ALP, OC and OASIS expression in mouse calvarial derived osteoblasts.
Keywords
CREBH; ER stress; Osteoblast differentiation; Tunicamycin;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
  • Reference
1 Jang, W. G., Kim, E. J., Lee, K. N., Son, H. J. and Koh, J. T. (2011) AMP-activated protein kinase (AMPK) positively regulates osteoblast differentiation via induction of Dlx5-dependent Runx2 expression in MC3T3E1 cells. Biochem. Biophys. Res. Commun. 404, 1004-1009.   DOI   ScienceOn
2 Saito, A., Ochiai, K., Kondo, S., Tsumagari, K., Murakami, T., Cavener, D. R. and Imaizumi, K. (2011) Endoplasmic reticulum stress response mediated by the PERK-eIF2(alpha)-ATF4 pathway is involved in osteoblast differentiation induced by BMP2. J. Biol. Chem. 286, 4809-4818.   DOI   ScienceOn
3 Chen, D., Harris, M. A., Rossini, G., Dunstan, C. R., Dallas, S. L., Feng, J. Q., Mundy, G. R. and Harris, S. E. (1997) Bone morphogenetic protein 2 (BMP-2) enhances BMP-3, BMP-4, and bone cell differentiation marker gene expression during the induction of mineralized bone matrix formation in cultures of fetal rat calvarial osteoblasts. Calcif. Tissue. Int. 60, 283-290.   DOI   ScienceOn
4 Murakami, T., Saito, A., Hino, S., Kondo, S., Kanemoto, S., Chihara, K., Sekiya, H., Tsumagari, K., Ochiai, K., Yoshinaga, K., Saitoh, M., Nishimura, R., Yoneda, T., Kou, I., Furuichi, T., Ikegawa, S., Ikawa, M., Okabe, M., Wanaka, A. and Imaizumi, K. (2009) Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat. Cell. Biol. 11, 1205-1211.   DOI   ScienceOn
5 McInnes, I. B. and Schett, G. (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429-442.   DOI   ScienceOn
6 Firestein, G. S. (2003) Evolving concepts of rheumatoid arthritis. Nature 423, 356-361.   DOI   ScienceOn
7 Kanis, J. A., Borgstrom, F., De Laet, C., Johansson, H., Johnell, O., Jonsson, B., Oden, A., Zethraeus, N., Pfleger, B. and Khaltaev, N. (2005) Assessment of fracture risk. Osteoporos. Int. 16, 581-589.   DOI   ScienceOn
8 Tohmonda, T., Miyauchi, Y., Ghosh, R., Yoda, M., Uchikawa, S., Takito, J., Morioka, H., Nakamura, M., Iwawaki, T., Chiba, K., Toyama, Y., Urano, F. and Horiuchi, K. (2011) The IRE1alpha-XBP1 pathway is essential for osteoblast differentiation through promoting transcription of Osterix. EMBO Rep. 12, 451-457.   DOI   ScienceOn
9 Jang, W. G., Kim, E. J., Bae, I. H., Lee, K. N., Kim, Y. D., Kim, D. K., Kim, S. H., Lee, C. H., Franceschi, R. T., Choi, H. S. and Koh, J. T. (2011) Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2. Bone 48, 885-893.   DOI   ScienceOn
10 Yamaguchi, A., Komori, T. and Suda, T. (2000) Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr. Rev. 21, 393-411.   DOI   ScienceOn
11 Komori, T. (2006) Regulation of osteoblast differentiation by transcription factors. J. Cell Biochem. 99, 1233-1239.   DOI   ScienceOn
12 Wozney, J. M. (1998) The bone morphogenetic protein family: multifunctional cellular regulators in the embryo and adult. Eur. J. Oral. Sci. 106(Suppl 1), 160-166.   DOI   ScienceOn
13 Canalis, E., Economides, A. N. and Gazzerro, E. (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr. Rev. 24, 218-235.   DOI   ScienceOn
14 Katagiri, T., Yamaguchi, A., Ikeda, T., Yoshiki, S., Wozney, J. M., Rosen, V., Wang, E. A., Tanaka, H., Omura, S. and Suda, T. (1990) The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem. Biophys. Res. Commun. 172, 295-299.   DOI   ScienceOn
15 Katagiri, T., Yamaguchi, A., Komaki, M., Abe, E., Takahashi, N., Ikeda, T., Rosen, V., Wozney, J. M., Fujisawa-Sehara, A. and Suda, T. (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J. Cell. Biol. 127, 1755-1766.   DOI   ScienceOn
16 Sakano, S., Murata, Y., Miura, T., Iwata, H., Sato, K., Matsui, N. and Seo, H. (1993) Collagen and alkaline phosphatase gene expression during bone morphogenetic protein (BMP)-induced cartilage and bone differentiation. Clin. Orthop. Relat. Res. 292, 337-344.
17 Takuwa, Y., Ohse, C., Wang, E. A., Wozney, J. M. and Yamashita, K. (1991) Bone morphogenetic protein-2 stimulates alkaline phosphatase activity and collagen synthesis in cultured osteoblastic cells, MC3T3-E1. Biochem. Biophys. Res. Commun. 174, 96-101.   DOI   ScienceOn
18 Ron, D. (2002) Translational control in the endoplasmic reticulum stress response. J. Clin. Invest. 110, 1383-1388.   DOI
19 Ducy, P. and Karsenty, G. (1995) Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol. Cell. Biol. 15, 1858-1869.   DOI
20 Mori, K. (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101, 451-454.   DOI   ScienceOn
21 Schroder, M. and Kaufman, R. J. (2005) ER stress and the unfolded protein response. Mutat. Res. 569, 29-63.   DOI   ScienceOn
22 Mahoney, W. C. and Duksin, D. (1979) Biological activities of the two major components of tunicamycin. J. Biol. Chem. 254, 6572-6576.
23 Olden, K., Pratt, R. M., Jaworski, C. and Yamada, K. M. (1979) Evidence for role of glycoprotein carbohydrates in membrane transport: specific inhibition by tunicamycin. Proc. Natl. Acad. Sci. USA 76, 791-795.   DOI   ScienceOn
24 Brown, M. S., Ye, J., Rawson, R. B. and Goldstein, J. L. (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391-398.   DOI   ScienceOn
25 Omori, Y., Imai, J., Watanabe, M., Komatsu, T., Suzuki, Y., Kataoka, K., Watanabe, S., Tanigami, A. and Sugano, S. (2001) CREB-H: a novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liver-specific expression. Nucleic Acids Res. 29, 2154-2162.   DOI   ScienceOn
26 Chin, K. T., Zhou, H. J., Wong, C. M., Lee, J. M., Chan, C. P., Qiang, B. Q., Yuan, J. G., Ng, I. O. and Jin, D. Y. (2005) The liver-enriched transcription factor CREB-H is a growth suppressor protein underexpressed in hepatocellular carcinoma. Nucleic Acids. Res. 33, 1859-1873.   DOI   ScienceOn
27 Reimertz, C., Kogel, D., Rami, A., Chittenden, T. and Prehn, J. H. (2003) Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J. Cell Biol. 162, 587-597.   DOI   ScienceOn
28 Zhang, K., Shen, X., Wu, J., Sakaki, K., Saunders, T., Rutkowski, D. T., Back, S. H. and Kaufman, R. J. (2006) Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124, 587-599.   DOI   ScienceOn
29 Kaufman, R. J. (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211-1233.   DOI   ScienceOn