• Title/Summary/Keyword: cyclic/seismic behavior

Search Result 452, Processing Time 0.026 seconds

Study on seismic behavior of fabricated beam-column bolted joint

  • Zhang, Yu;Ding, Kewei
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.801-812
    • /
    • 2022
  • To better promote the development of fabricated buildings, this paper studies the seismic behavior of precast concrete beam-column bolted joint under vertical low cyclic loading. The experimental results show that cracks appear in the beam-column joint core area. Meanwhile, the concrete and the grade 5.6 bolts are damaged and deformed, respectively. Specifically, the overall structure of the beam-column joint remains intact, and the bolts have good energy dissipation capacity. Based on the experimental study, a new method of beam-column bolted connection is proposed in simulation analysis. The simulation results show that the bolts deform in the core area of the new beam-column joint, which enhances the concrete shear capacity legitimately and protects the T-end of the beam against shear failure. To summarize, both the experimental joint and the simulated joint prolong the service life by replacing the bolts under the seismic loading. The research results provide a reference for applications of the fabricated beam-column joint.

Numerical investigation on the flexural links of eccentrically braced frames with web openings

  • Erfani, S.;Vakili, A.;Akrami, V.
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.171-188
    • /
    • 2021
  • Plastic deformation of link beams in eccentrically braced frames is the primary dissipating source of seismic energy. Despite the excellent compatibility with the architectural designs, previous researches indicate the deficiency of flexural yielding links compared to the shear yielding ones because of their localized plastic deformation. Previous investigations have shown that implementing web openings in beams could be an efficient method to improve the seismic performance of moment-resisting connections. Accordingly, this research investigates the use of flexural links with stiffened and un-stiffened web openings to eliminate localized plasticity at the ends of the link. For this purpose, the numerical models are generated in finite element software "Abaqus" and verified against experimental data gathered from other studies. Models are subjected to cyclic displacement history to evaluate their behavior. Failure of the numerical models under cyclic loading is simulated using a micromechanical based damage model known as Cyclic Void Growth Model (CVGM). The elastic stiffness and the strength-based and CVGM-based inelastic rotation capacity of the links are compared to evaluate the studied models' seismic response. The results of this investigation indicate that some of the flexural links with edge stiffened web openings show increased inelastic rotation capacity compared to an un-perforated link.

Numerical investigation on the flexural links of eccentrically braced frames with web openings

  • Erfani, S.;Vakili, A.;Akrami, V.
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.183-198
    • /
    • 2022
  • Plastic deformation of link beams in eccentrically braced frames is the primary dissipating source of seismic energy. Despite the excellent compatibility with the architectural designs, previous researches indicate the deficiency of flexural yielding links compared to the shear yielding ones because of their localized plastic deformation. Previous investigations have shown that implementing web openings in beams could be an efficient method to improve the seismic performance of moment-resisting connections. Accordingly, this research investigates the use of flexural links with stiffened and un-stiffened web openings to eliminate localized plasticity at the ends of the link. For this purpose, the numerical models are generated in finite element software "Abaqus" and verified against experimental data gathered from other studies. Models are subjected to cyclic displacement history to evaluate their behavior. Failure of the numerical models under cyclic loading is simulated using a micromechanical based damage model known as Cyclic Void Growth Model (CVGM). The elastic stiffness and the strength-based and CVGM-based inelastic rotation capacity of the links are compared to evaluate the studied models' seismic response. The results of this investigation indicate that some of the flexural links with edge stiffened web openings show increased inelastic rotation capacity compared to an un-perforated link.

Nonlinear Seismic Response and Failure Behavior of reinforced Concrete Shear Wall Subjected to Base Acceleration (지반가속도에 의한 철근콘크리트 전단벽의 비선형 지진응답 및 파괴거동)

  • 유영화;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.21-32
    • /
    • 1999
  • A ground motion resulting from the destructive earthquakes can subject reinforced concrete members to very large forces. The reinforced concrete shear walls are designed as earthquake-resistant members of building structure in order to prevent severe damage due to the ground motions. The current research activities on seismic behavior of reinforced concrete member under ground motions have been limited to the shaking table test or equivalent static cyclic test and the obtained results have been summarized and proposed for the seismic design retrofit of structural columns or shear walls. The present study predicted the seismic response and failure behavior of reinforced concrete shear wall subjected to base acceleration using the finite element method. A decrease in strength and stiffness, yielding of reinforcing bar, and repetition of crack closing and opening due to seismic load with cyclic nature are accompanied by the crack which is necessarily expected to take place in concrete member. In this study the nonlinear material models for concrete and reinforcing bar based on biaxial stress field and algorithm of dynamic analysis were combined to construct the analytical program using the finite element method. The analytical seismic response and failure behaviors of reinforced concrete shear wall subjected to several base accelerations were compared with reliable experimental result.

  • PDF

Seismic behavior of steel and sisal fiber reinforced beam-column joint under cyclic loading

  • S.M. Kavitha;G. Venkatesan;Siva Avudaiappan;Chunwei Zhang
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.481-492
    • /
    • 2023
  • The past earthquakes revealed the importance of the design of moment-resisting reinforced concrete framed structures with ductile behavior. Due to seismic activity, failures in framed structures are widespread in beam-column joints. Hence, the joints must be designed to possess sufficient strength and stiffness. This paper investigates the effects of fibers on the ductility of hybrid fiber reinforced self-compacting concrete (HFRSCC) when subjected to seismic actions; overcoming bottlenecks at the beam-column joints has been studied by adding low modulus sisal fiber and high modulus steel fiber. For this, the optimized dose of hooked end steel fiber content (1.5%) was kept constant, and the sisal fiber content was varied at the rate of 0.1%, up to 0.3%. The seismic performance parameters, such as load-displacement behavior, ductility, energy absorption capacity, stiffness degradation, and energy dissipation capacity, were studied. The ductility factor and the cumulative energy dissipation capacity of the hybrid fiber (steel fiber, 1.5% and sisal fiber, 0.2%) added beam-column joint specimen is 100% and 121% greater than the control specimen, respectively. And also the stiffness of the hybrid fiber reinforced specimen is 100% higher than the control specimen. Thus, the test results showed that adding hybrid fibers instead of mono fibers could significantly enhance the seismic performance parameters. Therefore, the hybrid fiber reinforced concrete with 1.5% steel and 0.2% sisal fiber can be effectively used to design structures in seismic-prone areas.

Seismic responses of composite bridge piers with CFT columns embedded inside

  • Qiu, Wenliang;Jiang, Meng;Pan, Shengshan;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.343-355
    • /
    • 2013
  • Shear failure and core concrete crushing at plastic hinge region are the two main failure modes of bridge piers, which can make repair impossible and cause the collapse of bridge. To avoid the two types of failure of pier, a composite pier was proposed, which was formed by embedding high strength concrete filled steel tubular (CFT) column in reinforced concrete (RC) pier. Through cyclic loading tests, the seismic performances of the composite pier were studied. The experimental results show that the CFT column embedded in composite pier can increase the flexural strength, displacement ductility and energy dissipation capacity, and decrease the residual displacement after undergoing large deformation. The analytical analysis is performed to simulate the hysteretic behavior of the composite pier subjected to cyclic loading, and the numerical results agree well with the experimental results. Using the analytical model and time-history analysis method, seismic responses of a continuous girder bridge using composite piers is investigated, and the results show that the bridge using composite piers can resist much stronger earthquake than the bridge using RC piers.

Inelastic Cyclic Behavior of Locally Buckled Steel Members (국부좌굴된 강구조부재의 비탄성 반복 거동)

  • Lee, Eun Taik;Song, Keum Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.139-149
    • /
    • 2005
  • Post-local buckling behavior is a very important consideration in plastic and seismic design of steel structures. It describes the structural behavior up to the final collapse state. In order to assess the actual reliability of structures under severe repeated loading, such as strong earthquakes, it is necessary to evaluate the progressive cyclic deterioration of stiffness as well as the strength and energy dissipation capacity of the structures after local buckling happens. In this study, a simple analytical model developed for predicting post-local buckling behavior for cyclic and non-proportional loading histories, has been proposed. This analytical model uses the stress resultant model based on the two surface model. Analytical moment-curvature relationship using this model compare well with the experimental results in constant amplitude cycling, and linearized energy deterioration which is very important in seismic design can be predicted from the proposed model.

Quasi-Static Test for Seismic Performance of Circular R.C. Bridge Piers Before and After Retrofitting (유리섬유 보강 원형 철근콘크리트 교각의 내진성능에 관한 준정적 실험연구)

  • 정영수;이강균;한기훈;이대형
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.107-118
    • /
    • 1999
  • 10 RC bridge piers have been made on a 1/3.4 scale model, and six piers of them were retrofitted with glassfiber. The have been tested in the quasi-static cyclic load so as to investigate their seismic enhancement before and after retrofitting with glassfibers. The objective of this experimental study is to investigate how to strength the ductility of reinforced concrete bridge piers which have been nonseismically designed and constructed in Korea before 1992. Important test parameters are axial load, load pattern, retrofit type. Glassfiber sheets were used for retrofitting in the plastic hinge region of concrete piers. The nonlinear behavior of bridge columns have been evaluated through their yield and ultimate strength, energy dissipation, displacement ductility and load-deflection characteristics under quasi-static cyclic loads. It can be concluded from the test that concrete piers strengthened with glassfibers have been enhanced for their ductile behavior by approximate 50%.

Analytical Study on Inelastic Behavior and Ductility Capacity of Reinforced Concrete Bridge Columns with Lap Splices (주철근 겹침이음을 갖는 철근콘크리트 교각의 비탄성 거동 및 연성능력에 관한 해석적 연구)

  • 김태훈;김운학;신현목;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.931-936
    • /
    • 2003
  • Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. Lap splicing is also permitted if hoops or spiral reinforcement are provided over the lap length in the current seismic design provision. But sudden brittle failure of lap splices may occur under inelastic cyclic loading. The purpose of this study is the analytical prediction of nonlinear hysteretic behavior and ductility capacity of reinforced concrete bridge piers with lap splices under cyclic loading. For this purpose, a nonlinear analysis program, RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology) is used. Lap spliced bar element is developed to predict behaviors of lap spliced bar. Maximum bar stress and slip of lap spliced bar is considered.

  • PDF

Variations in the hysteretic behavior of LRBs as a function of applied loading

  • Ozdemir, Gokhan;Bayhan, Beyhan;Gulkan, Polat
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.69-78
    • /
    • 2018
  • The study presented herein focused on the change in hysteretic force-deformation behavior of lead rubber bearings (LRBs). The material model used to idealize response of LRBs under cyclic motion is capable of representing the gradual attrition in strength of isolator unit on account of lead core heating. To identify the effect of loading history on the hysteretic response of LRBs, a typical isolator unit is subjected to cyclic motions with different velocity, amplitude and number of cycles. Furthermore, performance of an LRB isolated single degree of freedom system is studied under different seismic input levels. Finally, the significance of lead core heating effect on LRBs is discussed by considering the current design approach for base isolated structures. Results of this study show that the response of an LRB is governed strongly by the amplitude and number of cycles of the motion and the considered seismicity level.