• Title/Summary/Keyword: cutting strength

Search Result 479, Processing Time 0.027 seconds

Seam Strength Depending on the Change of Cutting Direction of Fine Cotton Fabrics (세번수 면직물의 재단 방향 변화에 따른 봉합강도)

  • Uh, Mi-Kyung
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.15 no.3
    • /
    • pp.33-40
    • /
    • 2013
  • This paper focused on investigating the seam strength by cutting direction depending on the fabrics and weave by comparing the tensile strength and elongation of bias, warp and weft of 4 kinds of find cotton fabrics and combining 6 kinds of seam cutting directions. The cutting directions are selected the warp direction, weft direction and 45-degree bias direction. Then, three kinds of directions, the warp/warp direction, the weft/weft direction and the bias/bias directions, and the three different kinds of directions, the warp/weft direction, the warp/bias direction and the weft/bias directions, were finally selected. The results are as follows: The tensile strength of all fabrics was higher in the order of warp, bias and weft direction and tensile elongation was higher in the order of bias, warp and weft direction in almost all fabrics. 100's and 150's cotton fabrics showed the highest seam strength when they were cut in the bias/bias direction. The seam strength of the fabrics cut in the same direction was the highest in the fabrics cut in the bias/bias direction. Four kinds of fabrics demonstrated the similar seam strength. However, for the seam strength of fabrics cut in the different directions, 100's cotton fabrics had the difference of seam strength by direction and weave, but 150's cotton fabrics didn't have any difference in seam strength by direction and weave. As described above, the seam strength was influenced by the cutting direction of fabrics. Accordingly, the seam strength can be improved by changing the cutting direction of seam when making the clothing.

  • PDF

Stability Analysis of a Micro Stage for Micro Cutting Machine with Various Hinge Type and Material Transformation (초정밀 가공기용 마이크로 스테이지의 힌지 형상과 재질 변화에 따른 안정성 해석)

  • Kim, Jae-Yeol;Kwak, Yi-Gu;Yoo, Sin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.233-240
    • /
    • 2003
  • Recently, the world are preparing for new revolution, called as If (Information Technology), NT (Nano-Technology), and BT (Bio-Technology). NT can be applied to various fields such as semiconductor-micro technology. Ultra precision processing is required for NT in the field of mechanical engineering. Recently, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts. Therefore, in this paper, stability of ultra precision cutting unit is investigated, this unit is the kernel unit in ultra precision processing machine. According to alteration of shape and material about hinge, stability investigation is performed. In this paper, hinge shapes of micro stage in UPCU(Ultra Precision Cutting Unit) are designed as two types, where, hinge shapes are composed of round and rectangularity. Elasticity and strength are analyzed about micro stage, according to hinge shapes, by FE analysis. Micro stage in ultra precision processing machine has to keep hinge shape under cutting condition with 3-component force (cutting component, axial component, radial component) and to reduce modification against cutting force. Then we investigated its elasticity and its strength against these conditions. Material of micro stage is generally used to duralumin with small thermal deformation. But, stability of micro stage is investigated, according to elasticity and strength due to various materials, by FE analysis. Where, Used materials are composed of aluminum of low strength and cooper of medium strength and spring steel of high strength. Through this stability investigation, trial and error is reduced in design and manufacture, at the same time, we are accumulated foundation data for unit control.

A Study on the Machinability of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 절삭성에 관한 연구)

  • Park, Jong-Nam;Kim, Jae-Yoel;Cho, Gyu-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.128-133
    • /
    • 2010
  • The Titanium has many superior characteristics which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coated Tool which treated Physical Vapor Deposition. Experimental works are also executed to measure cutting force, tool wear, chip figuration and surface roughness for different cutting conditions. As a result of study. Cutting depth influences on the cutting force much more than the feed rate and the value of the cutting force is the most stable at the depth of 1.0mm. And tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

An ExperimentalStudy in Efficiency of Repair for Cutting Area (결손 시험체의 보수 성능에 관한 실험적 연구)

  • 이영도;백민수;최응규;김영회;정상진;최문식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.585-591
    • /
    • 1997
  • The purpose of this experiment is to verify and efficiency of repair for cutting area. The result of this experiment is the fact thar the strength of compression and bending in declined by width and depth of cutting area. Deterioration of strength depends on depth to be repair area the strength of compression decreased up 50% when the repairing area is the fact that it is emerged by the increased of depth size rather than width size.

  • PDF

Calculation of a reference force for feedrate scheduling using the FEM analysis of a tool (엔드밀링 공구의 유한요소해석을 통한 이송속도 스케줄링의 기준 절삭력 산출)

  • 이한울;조동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.416-421
    • /
    • 2004
  • Off-line feedrate scheduling is presented as the advanced technology to regulate cutting forces at the desired level through change of feedrates. In rough cutting, the feedrate scheduling aims at reducing the machining time, which is the most important factor for better productivity. Thus, the largest force which can avoid breakage of tool shank and tooth is a reference force for feedrate scheduling in rough cutting. In this paper, a calculation method of the reference cutting force for feedrate scheduling is developed. This model calculates rupture plane of tooth using the FEM analysis of a tool and computes the reference force using the transverse rupture strength of a tool. Experiments validate that the presented feedrate scheduling model reduced machining time drastically and regulate cutting forces at the reference cutting force.

  • PDF

ADHESION STRENGTH OF DIAMOND COATED WC-Co TOOLS USING MICROWAVE PLASMA CVD

  • Kiyama, Nobumichi;Sakamoto, Yukihiro;Takaya, Matsufumi
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.540-544
    • /
    • 1996
  • To apply the CVD diamond film to coated tools, it is necessary to make adhesion strength between diamond film and substrate stronger. So adhesion strength of diamond coated WC-Co tools using Microwave Plasma CVD and cutting test of Al-18mass%Si alloy using diamond cutting tools were studied. Diamond coating was carried out using Microwave Plasma CVD apparatus. Reaction gas was used mixture of methane and hydrogen. Substrate temperature were varied from 673K to 1173K by control of microwave output power and reaction pressure. By observation of SEM, grain size became larger and larger as substrate temperature became higher and higher. Also all deposits were covered with clear diamond crystals. XRD results, the deposits were identified to cubic diamond. An analysis using Raman spectroscopy, the deposit synthesized at lower substrate temperature (673K) showed higher quality than deposit synthesized at higher substrate temperature (1173K). As a result of scratch adhesion strength test, from 873K to 1173K adhesion strength decreased by rising of substrate temperature. The deposit synthesized at 873K showed best adhesion strength. In the cutting test of Al-18mass%Si alloy using diamond coated tools and the surface machinability of Al-Si works turned with diamond coating tools which synthesized at 873K presented uniform roughness. Cutting performance of Al-18mass%Si alloys using diamond coated WC-Co tools related to the adhesion strength.

  • PDF

A Study on the Metrial Charcterisitics of Material Quality and Milling of Axle Materials for a Automobile (자동차 차축 소재의 금속적 특징 및 밀링 절삭 특성 연구)

  • 채왕석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.77-83
    • /
    • 1997
  • In this paper, we have studied internal quality including chemical compositions, microscopic structure and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting force of milling including tensile strength value, hardness etc. Test materials are used in the tempered carbon steel and the non-tempered carbon steel. The obtained results are as follows: 1. In analyzing internal quality, the tempered carbon steel have typical martensite structure and the non-tempered carbon steel have ferrite + pearlite structure. 2. Yield strength, tensile strength and hardness value are in the non-tempered carbon steel but elongation is maximum value in the tempered carbon steel. 3. Cutting force is smaller non-tempered carbon steel than tempered carbon steel when feed speed and depth on cut is constant. 4. Cutting force is smaller non-tempered carbon steel than tempered carbon steel when cutting speed and depth of cut is constant.

  • PDF

A Study on the Machining Charcterisitics of Milling of cylinderical Rod Materials for Passenger Car (승용차용 CYLINDER ROD 소재의 밀링 적삭 특성 연구)

  • 채왕석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.143-148
    • /
    • 1996
  • In this paper, we have studied internal quality including chemical compositions, microscopic structure and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting force of milling including tensile strength value hardness etcs. Test materials are used the tempered carbon steel and the non-tempered carbon steel. The obtained results are as follows: 1.In analyzing internal quality, the tempered carbon steel have typical martensite structure and the non-tempered carbon steel have ferrite+pearlite structure. 2.Yield strength, tensile strength and hardness value are in the non-tempered carbon steel but elongation is maximum value in the tempered carbon steel. 3.Cutting force is smaller non-tempered carbon steel than tempered carbon steel when feed speed and depth of cut is constant. 4.Cutting force is smaller to the tempered carbon steel and smaller non-tempered carbon steel than tempered carbon steel when cutting conditions

  • PDF

An Experimental Study on Cutting Characteristic of Ceramics (세라믹스의 절삭거동에 관한 실험적 연구)

  • 이길우;김순태
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.5
    • /
    • pp.420-426
    • /
    • 1993
  • The machinability of ceramics has been experimentally studied. The experiments were conducted on alumina cernmics of various purity, quartz, and cordierite using the sintered diamond tools and CBN tools. Tool wasre, surface roughness, and cutting resistence were measured and analysed. It was found that the workpieces could be machined with the diamond and CBN tools, but the sintered diamond tools were more efficient for the machining of the high strength ceramics. The machining of alumina ceramics with sintered diamond tools showed that (1) wet machining prolonged tool life comparing with dry machining, (2) workpiecewith higher purity had better surface roughness, (3) severe cutting conditions led to the chipping and fracture of tool and increase of the surface roughness and cutting resistance, (4) 20~40m/min of cutting speed, 0.01~0.02mm/rev of feed, and 0.1~0.2mm of cutting depth are suggested as proper cutting conditions for the high strength ceramics.

  • PDF

A Study on the Cutting Characteristics in the Machining of Ti-6Al-4V Alloy using TiAlN Coated Tool (TiAlN 코팅공구를 사용한 Ti-6Al-4V 티타늄합급의 절삭특성에 관한 연구)

  • 이승철;박종남;조규재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.451-456
    • /
    • 2004
  • The Titanium has many superior characteristics Which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coate Tool which treated PVD (Physical Vapor Deposition). Experimental works are also executed to measure cutting force, chip figuration and surface roughness for different cutting conditions. As a result of study. Tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

  • PDF