• 제목/요약/키워드: cutting force parameter

검색결과 69건 처리시간 0.029초

자동회귀-이동평균(ARMA) 모델에 의한 초음파 진동 절삭 공정의 해석 (An analysis of cutting process with ultrasonic vibration by ARMA model)

  • I.H. Choe;Kim, J.D.
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.85-94
    • /
    • 1994
  • The cutting mechanism of ultrasonic vibration machining is characterized as two phases, that is, an impact at the cutting edge and a reduction of cutting force due to non-contact interval between tool and workpiece. In this paper, in order to identify cutting dynamics of a system with ultrasonically vibrated cutting tool, an ARMA modeling is performed on experimental cutting force signals which have a dominant effect on cutting dynamics. The aim of this study is, through Dynamic Date System methodology, to find the inherent characteristics of an ultrasonic vibration cutting process by considering natural frequency and damping coefficient. Surface roughness and stability of cutting process under ultrasonic vibration are also considered

  • PDF

2자유도 채터진동의 특성에 관한 연구 (A study on the chatter vibration of two degree of freedom systems)

  • 김정석;강명창;김병룡
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.216-226
    • /
    • 1993
  • Three dimensional cutting is considered as an equivalent orthogonal cutting through the plane containing both the cutting velocity vector and the chip flow velocity vector in dynamic cutting process. An analytical expression of dynamic cutting force is obtained from the cutting parameters determined by the static cutting. Particular attention is paid to the energy supplied to the vibratory system of cutting tool with two degree of freedom. In this approach, the phase lag of the horizontal vibration of the tool behind the vertical vibration and the direction angle of the fluctuating cutting force is considered in point of stability limits. Chatter vibration can be effectively suppressed by relatively increasing the spring constant and the damping coefficient of the cutting system in the vertical cutting force direction. A good agreement is found between the stability limits predicted by theoretical value and experimental results.

  • PDF

공구재종에 따른 엔드밀 가공의 절삭력에 관한 통계적해석 (Statistical Analysis of Cutting Force for End Milling with Different Cutting Tool Materials)

  • 최만성
    • 반도체디스플레이기술학회지
    • /
    • 제15권4호
    • /
    • pp.86-91
    • /
    • 2016
  • End milling is an important and common machining operation because of its versatility and capability to produce various profiles and curved surfaces. This paper presents an experimental study of the cutting force variations in the end milling of SM25C with HSS(high speed steel) and carbide tool. This paper involves a study of the Taguchi design application to optimize cutting force in a end milling operation. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. This study included feed rate, spindle speed and depth of cut as control factors, and the noise factors were different cutting tool in the same specification. An orthogonal array of $L_9(3^3)$ of ANOVA analyses were carried out to identify the significant factors affecting cutting force, and the optimal cutting combination was determined by seeking the best cutting force and signal-to-noise ratio. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.

알루미늄합금 절삭시 절삭성과 절삭조건의 상관성에 관한 연구 (A Study on the Correlation between Machinability and the Cutting Condition in Machining Aluminum Alloy)

  • 오석형
    • 한국기계가공학회지
    • /
    • 제3권4호
    • /
    • pp.56-62
    • /
    • 2004
  • Using NC or CNC machine tool, the unmanned automatic production system has been growing recently in the manufacturing field. Thus it is important to find out the machinability of cutting force, tool wear and surface roughness during the cutting process. It is necessary to find how to estimate the machinability for the effective cutting condition because of problem about cutting power, tool wear, cutting time and precision. This study was planned to discover the relations of tool wear by variations of roughness and derived to correlate the wear with the surface roughness on the cutting parameter(cutting force, flank wear, surface roughness, friction angle, shear angle, slenderness ratio) when the aluminum alloy was cut in turning.

  • PDF

볼엔드밀 가공에서 공구 런아웃 매개변수 검출 (Cutter Runout Parameter Estimation in Ball-End Milling)

  • 김창주;김성윤;주종남
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.171-178
    • /
    • 2000
  • In this study, an indirect method to estimate the setup runout of a ball-end mill from cutting force signal is proposed. This runout makes cutting forces of each tooth of the milling cutter unequal. By transforming the cutting force model from time domain to frequency domain through time-convolution theorem, the magnitude and phase angle of runout can be explicitly expressed with material constants, cutting conditions, and force signal. The static setup runout can be obtained by extrapolating estimated effective runout, which is independent of feedrate but decreases linearly with increase in axial depth of cut. The setup runout estimated by slot cutting experiments, shows good agreement with the measured one.

  • PDF

고속가공용 엔드밀의 형상설계에 관한 연구(2) (A Study on the Design of Endmill Geometry in High Speed Machining)

  • 고성림;배승민;김경배;서천석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.19-22
    • /
    • 1997
  • The objective of this research is to use an analytical and experimental approach to develop optimal tool geometry for high speed machining. The tool geometry parameters and cutting process have complex relationships. Until now, numerous cutting tests were needed to acquire optimal design of endmill for the purpose of high speed machining, dut to the insufficient knowledge about process in high speed machining. In order to improve the cutting ability of endmill, a model for optimal cutter shape was developed to minimize resultant cutting force by combing cutting force and wear test and surface roughness test from optimized and conventional cutter with the same cutting condition. Using various tools with different geometry, relationships between the tool geometry parameter, rake angle, clearance angle, lengh of cutter have been stuied.

  • PDF

엔드밀 가공시 절삭조건에 따른 절삭력의 비선형 해석 (Nonlinear Analysis of Cutting Force Signal according to Cutting Condition in End Mill Machining)

  • 구세진;강명창;이득우;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.161-164
    • /
    • 1995
  • Nonlinear analysis of various phenomena has been developed with improvement of computer. The characteristics form nonlinear analysis are available in monitoring and diagnosis state of system. There are many nonlinear property in cutting process, but nonlinear signals have been considered as noise. In this study, nonlinear analysis technique is applied and it will be verified that cutting force is chaos by calculating Lyapunov exponents,fractal dimension and embedding dimension. The relation between characteristic parameter calculated form sensor signal and various cutting condition is investigated.

  • PDF

절삭력에 의한 하드터닝의 표면조도 예측에 관한 연구 (Study on Prediction of Surface Roughness in Hard Turning by Cutting Force)

  • 이강재;양민양;하재용;이창호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1768-1771
    • /
    • 2003
  • Hard turning replaces grinding for finishing process with expectations of higher productivity and demanded surface quality. Especially for the surface roughness as surface quality demanded in finishing process of hard turning, know-how of machining characteristics of hardened materials by cutting force analysis should be accumulated in company with achievement of precision of elements and high stiffness design technology in hard turning. Considering chip formation mechanism of hardened materials, adequate cutting conditions are selected for machining experiments and cutting forces are measured according to cutting conditions. Increase of cutting forces especially thrust force and increase of dynamic instability could occur in hard turning. Analysis of dynamic characteristics of the cutting forces is executed to investigate relation between dynamic instability and surface roughness in hard turning. Investigation on effects of relative motion of machining system generated by vibration due to dynamic instability shows that ultimate surface roughness could be predicted considering relative motion of machining system with geometrical surface roughness.

  • PDF

표면거칠기와 절삭력을 고려한 Al7075-T0 선삭가공 최적화 (Machining Optimization of Al7075-T0 Turning Process Considering Surface Roughness and Cutting Forces)

  • 정지훈;김정석;김평호;구준영;임학진;이종환
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.842-847
    • /
    • 2012
  • The Response Surface Method(RSM) is used as optimal design technique of experimental conditions. In Al7075-T0 turning operation, the principle cutting force and the Center-line averaged roughness are measured to optimize machining process. In variation of feed, depth of cut and cutting speed, three cutting parameters are evaluated. The optimal cutting conditions of Al7075-T0 turning are suggested by RSM. As a main result, feed is the dominant cutting parameter in this turning process considering surface roughness and cutting force.

엔드밀 마멸에 따른 절삭력과 표면조도의 특성 (the Characteristics of Cutting Force and Surface Roughness in case of Endmill Wear)

  • 허현;이기용;강명창;김정석;황경현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.75-78
    • /
    • 1996
  • End Milling is avilable for machining the variable shape of products and has been widely applicated in many industries. To manufacture precise products a surface roughness has to be noticable as a improtant parameter. In end milling the research for tool wear has been insufficient because the tool shape and the cutting geometry are complicated. In this paper the pattern of endmill wear is investigated and the machinability is evaluated. As finding out the characteristics of cutting force and surface roughness the effect of endmill wear on machinability is investigated.

  • PDF