• 제목/요약/키워드: cutter load

검색결과 45건 처리시간 0.019초

Modeling Cutter Swept Angle at Cornering Cut

  • Chan, K.W.;Choy, H.S.
    • International Journal of CAD/CAM
    • /
    • 제3권1_2호
    • /
    • pp.1-12
    • /
    • 2003
  • When milling concave corners, cutter load increases momentarily and fluctuates severely due to concentration and uneven distribution of material stock. This abrupt change of cutter load produces undesirable machining results such as wavy machined surface and cutter breakage. An important factor for studying cutter load in 2.5D pocket milling is the instantaneous Radial Depth of Cut (RDC). However, previous work on RDC under different corner-cutting conditions is lacking. In this different corner shapes. In our work, we express RDC mathematically in terms of the instantaneous cutter engage angle which is defined as Cutter Swept Angle (CSA). An analytical approach for modeling CSA is explained. Finally, examples are shown to demonstrate that the proposed CSA modeling method can give an accurate prediction of cutter load pattern at cornering cut.

콤바인 예취부 고장진단을 위한 예취 칼날부의 진단 시스템 개발(I) - 진동 및 부하 신호 분석 - (Development of Measurement System of Cutter Conditions for Combine Diagnosis (I) - Analysis of Vibration and Load Signals -)

  • 최창현;김용주;김종혁;문정환
    • Journal of Biosystems Engineering
    • /
    • 제32권3호
    • /
    • pp.190-196
    • /
    • 2007
  • The purpose of this study is to develop a measurement system of cutter conditions for combine header diagnosis during rice harvesting. A load cell was installed at the locker-arm to measure load fluctuation and an acceleration senor was used to monitor vibration signal of cutter bar. The data were collected from a paddy field during harvesting. The tests were conducted with a normal cutter, a loosened cutter, a broken cutter, and a worn-out connecter pin at the field. The vibration signals converted by FFT (Fast Fourier Transformation), filtered, and normalized. The load data and peak values of vibration signals in four different frequency ranges were used to determine the cutting operation and the cutter conditions of combine. The multiple comparison tests showed that the load data and peak values of vibration signals were important to monitor the cutting operation and cutter conditions of combine header.

TBM disc cutter ring type adaptability and rock-breaking efficiency: Numerical modeling and case study

  • Xiaokang Shao;Yusheng Jiang;Zongyuan Zhu;Zhiyong Yang;Zhenyong Wang;Jinguo Cheng;Quanwei Liu
    • Geomechanics and Engineering
    • /
    • 제34권1호
    • /
    • pp.103-113
    • /
    • 2023
  • This study focused on understanding the relationship between the design of a tunnel boring machine disc cutter ring and its rock-breaking efficiency, as well as the applicable conditions of different cutter ring types. The discrete element method was used to establish a numerical model of the rock-breaking process using disc cutters with different ring types to reveal the development of rock damage cracks and variation in cutter penetration load. The calculation results indicate that a sharp-edged (V-shaped) disc cutter penetrates a rock mass to a given depth with the lowest load, resulting in more intermediate cracks and few lateral cracks, which leads to difficulty in crack combination. Furthermore, the poor wear resistance of a conventional V-shaped cutter can lead to an exponential increase in the penetration load after cutter ring wear. In contrast, constant-cross-section (CCS) disc cutters have the highest quantity of crack extensions after penetrating rock, but also require the highest penetration loads. An arch-edged (U-shaped) disc cutter is more moderate than the aforementioned types with sufficient intermediate and lateral crack propagation after cutting into rock under a suitable penetration load. Additionally, we found that the cutter ring wedge angle and edge width heavily influence cutter rock-breaking efficiency and that a disc cutter with a 16 to 22 mm edge width and 20° to 30° wedge angle exhibits high performance. Compared to V-shaped and U-shaped cutters, the CCS cutter is more suitable for soft or medium-strength rocks, where the penetration load is relatively small. Additionally, two typical case studies were selected to verify that replacing a CCS cutter with a U-shaped or optimized V-shaped disc cutter can increase cutting efficiency when encountering hard rocks.

자동 절단과 부하 감응 제어 기술을 적용한 양날 도로절단기 개발 (Development of a Double-blades Road Cutter with Automatic Cutting and Load Sensing Control Technology)

  • 서명국;강명철;박종호;김영진
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권1호
    • /
    • pp.53-58
    • /
    • 2024
  • With the recent development of intelligence and automation technologies for construction machinery, the demand for safety and efficiency of road-cutting operations has continued to increase. In response to this, a double-blade road cutter has been developed that can automatically cut roads. However, a double-blade road cutter has a load difference between the two blades due to the ground and wear conditions of the cutting blades. The difference in load between the two blades distorts the direction of travel of the cutter. In this study, a vision sensor-based driving guide technology was developed to correct the driving path of road cutters. In addition, we developed a load-sensing technology that detects blade loads in real-time and controls driving speed in the event of overload.

문서세단기의 커터날 형상, 크기, 배열과 절단특성에 관한 연구 (The Study on Cutting Characteristic according to a Shape, Size and Array of Cutter for Paper Shredder)

  • 이위로;이동규;김민호
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.56-63
    • /
    • 2006
  • The aim of this study is to find the best cutting conditions as analyzing cutting process of paper shredder and shape of cutter. The test has been done variation of torque and cutting velocity according to load. When shape of cutter and distance between cutter and shaft are changed, The variation of cutting force according to cutting angle and load is geometrically analyzed. The result of geometrical analysis is presented that the radius and array of cutter is the method to improve torque of paper shredder. In this paper it is presented as basic method of design to improve cutting performance of paper shredder.

엔드밀 가공시 비례적분제어를 이용한 커터 런아웃 보상에 관한 연구 (A Study on the Cutter Runout Compensation by PI Control in End Mill Process)

  • 이기용;황준;정의식
    • 한국정밀공학회지
    • /
    • 제15권5호
    • /
    • pp.65-71
    • /
    • 1998
  • This paper presents in-process compensation methodology to eliminate cutter runout and improve machined surface quality. The cutter runout compensation system consists of the micro-positioning mechanism with the PZT (piezo-electric translator) which is embeded in the sliding table to manipulate the radial depth of cut in real time. For the implementation of cutter runout compensation methodology. cutting force adaptive control was proposed in the angle domain based upon PI (proportional-integral) control strategy to eliminate chip-load change in end milling process. Micro-positioning control due to adaptive acuation force response improves the machined surface quality by compensation or elimination of cutter runout induced cutting force variation. This results will provide lots of information to build-up the precision machining technology.

  • PDF

드럼커터 어태치먼트의 작용력에 대한 현장시험 (Field Test for Estimation of Acting Force on the Drum Cutter Attachment)

  • 최순욱;이철호;강태호;장수호
    • 터널과지하공간
    • /
    • 제32권6호
    • /
    • pp.373-385
    • /
    • 2022
  • 굴착기의 어태치먼트 형태로 사용하는 드럼커터는 현장에서 다양한 작업이 가능한 굴착기와 연계하여 사용하는 점에서 그 효용이 크다. 본 연구에서는 굴착기에 설치된 드럼커터 어태치먼트를 이용하여 노출된 암반사면을 대상으로 굴착 시 나타나는 유압과 변형률을 측정하여 드럼커터에 작용하는 하중과 토크를 추정하였다. 굴착기의 붐과 암의 작업각도와 sumping, lowering작업에 따라 8가지 작업모드로 구분하고 작업모드에 따른 유압과 작용력 변화를 분석한 결과, 유압과 유량은 드럼커터 어태치먼트의 제작사양에서 고려된 범위 내에서 문제없이 구동될 수 있음을 확인하였다. 드럼커터 어태치먼트에 작용하는 평균 하중과 토크는 제작사양의 범위 안에 있었지만, 최대하중은 제작사양의 4배까지 나타났다. 높은 지반강도의 영향으로 sumping이 적정하게 이루어지지 못한 점과 일부 위치에서 불연속면의 포함 등으로 인하여 굴착기의 붐과 암의 각도에 따른 하중과 토크의 경향을 발견하지 못하였다. 그러나 해당 결과는 높은 강도의 지반을 굴착할 경우에 드럼커터 어태치먼트에 나타나는 하중과 토크의 범위를 파악하는데 사용될 수 있을 것으로 판단된다.

밀링가공에서의 커더 런 아웃량 검출에 관한 연구 (A Study on the Detection of Cutter Runout Magnitude in Milling)

  • 황준;정의식;이기용;신승춘;남궁석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.151-156
    • /
    • 1995
  • This paper presents a methodology for real-time detecting and identifying the runout geometry of an end mill. Cutter runout is a common but undesirable phenomenon in multi-tooth machining such as end-milling process because it introduces variable chip loading to insert which results in a accelerated tool wear,amplification of force variation and hence enlargement vibration amplitude. Form understanding of chip load change kinematics, the analytical sutting force model was formulated as the angular domain convolution of three dynamic cutting force component functions. By virtue of the convolution integration property, the frequency domain expression of the total cutting forces can be given as the algebraic multiplication of the Fourier transforms of the local cutting forces and the chip width density of the cutter. Experimental study are presented to validata the analytical model. This study provides the in-process monitoring and compensation of dynamic cutter runout to improve machining tolerance tolerance and surface quality for industriql application.

  • PDF

이송률 자동조정을 위한 2차원 칩로드 해석 (Two-dimensional Chip-load Analysis for Automatic Feedrate Adjustment)

  • 배석형;고기훈;최병규
    • 한국CDE학회논문집
    • /
    • 제5권2호
    • /
    • pp.155-167
    • /
    • 2000
  • To be presented is two-dimensional chip-load analysis for cutting-load smoothing which is needed in unmanned machining and high speed machining of sculptured surfaces. Cutter-engagement angle and effective cutting depth are defined as chip-loads which are the geometrical measures corresponding to cutting-load while machining. The extreme values of chip-loads are geometrically derived in the line-line and line-arc-line blocks of the two-dimensional NC-codes. AFA(automatic feedrate adjustment) strategy for cutting-load smoothing is presented based on the chip-load trajectories.

  • PDF

밀링가공에서 절삭력 모델을 이용한 커터 오프셋 판별에 관한 연구 (A Study on the Identification of Cutter Offset by Cutting Force Model in Milling Process)

  • 김영석
    • 한국생산제조학회지
    • /
    • 제7권2호
    • /
    • pp.91-99
    • /
    • 1998
  • This paper presents a methodology for identifying the cutter runout geometry in end milling process. Cutter runout is common but undesirable phenomenon in multi-tooth machining because it introduces variable chip loading to insert which results in a accelerated tool wear. amplification of force variation and hence enlargement vibration amplitude From understanding of chip load change kinematics, the analytical cutting force convolution model was formulated as the angular domain convolution model was formulated as the angular domain convolution of three dynamic cutting force component functions. By virtue of the convolution integration property, the frequency domain expression of the local cutting forces and the chip width density of the cutter. Experimental study is presented to validate the analytical model. This study provides the in-process monitoring and compensation of dynamic cutter runout to improve machining tolerance and surface quality for industrial application.

  • PDF