Modeling Cutter Swept Angle at Cornering Cut

H.S. Choy* and K. W. Chan
Deparment of Mecthancod Engincering. The University of Hong Kong. Pokfudam, Hong Komg

Abstract

Alstract - When milling concave corners, cutter load increases momentarily and fluctuates severely due to contentration and uneven distribution of material stock. This abrupt change of cutter load produces undesirable machining results such as wavs machined surface and cutter breakage. An important factor for studying cutter had in 2.5 D pocket milling is the instantaneous Radial Depth of Cut (RDC). However, previous work on RDC under different corner-cutting conditions is lacking. In luis paper, we overview typical work done by other researchers on cornering cut, followed by presenting our study on RDC for different corner shapes. In our work, we express RDC mathematically in terms of the instantancous cutter engage angle which is defined as Cutter Swept Angle (CSA). An analytical approach for medeling CSA is explained. Finally, examples are shown to demonsirate that the proposed CSA modeling method can give an accurate prediction of eufter load pattern at cornering cut.

Keywords: Pockel milling, concerning cul, cutter load, lool path, machining

I. Introduction

Pocke milling is a metal removal operation commonly used for crealing depressions in machined parts. Generating tool palh for milling a pocket begins by slicing the pocket into a number of horizontal layers. The layer gap width represents the incremental depth of cut along the spindle or cutter axis. The pocket boundary of each layer is revealed by evaluating the curves fomed between the intersection of the dissecting plane and the pocket's wall faces. Using the determined pockel boundary of each layer, difteren tool path patlerns can then be employed to remove the stock material within the pocket region

Popular pockel milling 1001 path pattems provided by contemporary CAM systems are zig, zig-zag and contourparallel offset (CPO) as illustrated in Fig. I. Among these bhree patterms, CPO tool path is most widely adopted because it produces lesser idle tool path portions and can maintain a consistent use of down-cut (or up-cut) milling method. However, CPO tool path inherently produces many convex and concave corners.

Before addressing the cutter problems caused by corners, it is necessary in introduce a measure for cutter load or chip load. As mentioned by Kline et al. [6], cutter load is directly related with chip thickness as shown in Fig. 2 where chip thickness is detined to be the distance between previously machined boundary and currently machined boundary. It is the maximum thickness of material in the radiat direction that a cutting edge encounters and is important in assessing

[^0]cutter toad on the edge. However, chip thickness is also directly related with the cutter engage are length. As an example, the cutter engage arc lengith for a cutter of diameter 20 mm is divided into 10 equal portions, which represents different stepover distances shown in Figs.

Fig. 1. Thace commonly used tool path patierns.

where $\mathrm{f}=$ Feetl instance $. \mathrm{F}_{\mathrm{f}}=$ Ramial cuttine forte. F , $=$ Tanumial
 steponel diviance

Fig. 2. Classical cuting force estimation.

Fig. 3. Relation between chip thickness and cutter engage arc lengith.

3(a) and (b). The corresponding chip thickness for different cutter engage arc lengths is plotted in Fig. 3(c) under a specified feed distance of 1.23 mm . It can be observed that the cutter engage arc length is directly proportional to the chip thickness. Therefore, it can be deduced that cutter engage are length can also be used for estimating cutter load.
The corner cutting problems are now illustrated as follows: By reterring to Fig. 4, it can be easily observed that when a cutter moves from a linear tool path segment into a convex corner, the cutter engage arc length effectively decreases. This means that cutter load will drop when performing convex cornering cut. This also implies that convex comers create less problem to machining since the change of chip load involved is a decrease rather than an increase. As an example, the cutsing result for line-line and line-are-line convex comers is selected to illustrate the difference between their encountered cutting forces. Shown in Fig. 5(a)-(f) is the culting forces encountered by a cutter of diameter 10 mm for different corner tool path radii are. When the cutter approaches the corner region, the cutting force encountered shown in Fig. 5(f) is substantially dropped close to zero. It means there is a short period of idle cutcing time. Therefore, a convex comer will not lead to a harmful cutting problem such

(c) Convex arc

Fig. 4. Cutting path classification.
as cutter deflection or even cutter breakage. However. the convex corner has the problem of having idle cutting tool path portions shown in Fig. G(a). A special tool path construction should be used for minimizing the problem such that the offser segments at convex comers will be extended and connected by adding circular ares in Fig. 6(b). If the tool path for convex comers is offsel

Fig. 5. Experimental result for convex comer:

Pig. 6. Tool path construction for convex corner.
by means of the mentioned approach. the problem of idle cutting tool path portions can be solved substantially. The larger the fillet radius at convex corner tool path. the more effective for solving the idle cutting time problem as shown in Fig. 5(a).
On the contary. when a cutter moves from a linear tool path segment into a concave comer. the culter engage arc length rises quickly. achieving a maximum value at the middle part of the corner, and then decreases as the cutter leaves the comer. Such a shatp rise and fall of cutter engage arc length at concave
comers will lead to undesirable results such as machine vibration, chatter marks on machined surface and even tool breakage when the cutter load is excessive. To avoid these adverse consequences, machining practitioners usually resort to using a lower cutting fecdrate and or depth of cut which leads 10 a reduction of machining elficiency. Maintaining a high machining efficiency. however, is of paramount importance for increasing competitiveness amidst today's stringent market conditions. Motivated by these background reasons, we therefore conducted an in-depth investigation on concave comering cut and reported our findings in this paper.
The remainder of this paper is organized as follow. Section 2 overviews previous work on cornering cut. Section 3 describes CSA for dilferent corner cases in detail. The formation of different CSA zones is explained with illustrations and the determination of the CSA values in different zones is expressed mathematically. Examples are given and compared for different approaches in sections 4. Section 5 concludes our work.

2. Review of previous work

In earlier work. Kline al al. |6] used a mechanissic model to estimate chip load and found that there was a
dramatic change in cuting force all cornering cut. Iwabe et al. [5] established a geometry analysis of the interaction between an ent mill colter and an inside comer. Tlusty et al. [II| proved that the change in radial depth of cut at comer had an adverse eflect on machining stability such as causing high frequency chatters.
Two major approaches can be identified for tackling cornering cut problem, namely the adaptive control and the modification of tool path geometry. The former approach focuses on controlling the culling perlormance by adjusting the cutting parameters instantaneously during cutting. For instance, Tarng et al. $\mid 10\}$ attempted to maintain a constant metal removal rate in pocket milling by adjusting feedrate adaptively. Spence et al. [8] scheduled the feedrate automatically so as to satisfy force, torque, and dimensional error constraints. Fussell et al. |2] used a feedrate planning system to select feedrate for 3-axis sculpture milling by inlegrating a 7 ,buffer geomerric model with a discrete mechanistic model of the cutter. A pre-requisite for applying this approach is a sophisticated NC machine that possesses NC program look-ahead function for advanced calculation of cutting conditions and a rapid acceleration/deceleration control mechanism to response to the frequent and quick change of feedrate.

The latter approach aims to adjust the chip load by using special tool path trajectory. For example. Tsai et al. [12| modified CPO tool path segments in order to reduce comer cutting problems such as chatter vibration and excessive machining errors. Stori et al. [9] presented a constant cutter engagement tool path for reducing cutting force variation at comer calting. However, their spiraling tool path can only be applied to a timited set of comer shapes.

Hindujia et al. |3| applied 2-D union operation to combine the area swept by the bottom face of an end mill and the remaining stock area left over by the previous machining path for linding RDC variation. More recently, they |4] also reported the application of RDC variation to selecting optimum cutter diameter for pocket machining. However, their approximate approach for finding the instantaneous RDC cannot handle more complicated comer shapes that were delined by Choy ef al. \{l|.

The static cutter engage angle along line and are segments was formally defined by Kramer [7]. However, the continuous dynamic change of culter engage angle at concave comers has not been addressed in his work. Instead of simply using the static cutter engage angle or RDC, we consider that the instantancous cutter swept angle CSA is a more appropriate parameter to describe the comer cutling condition because CSA can be used to describe the different stages of cutter engage angle clange during a cornering cut. We are also not aware of any previous research work done on CSA for complicated concave conners that are formed by different boundary geonetries. Our work therefore focuses on modeling

CSA at cornering cut for complicated corner shapes.

3. Analytical representation of CSA

We focus our consideration on pocket milling tool palhs that are formed by line, concave and convex arc segments. Relerring to Fig. 4, the governing equations of CSA, α, for these three basic tool path geometries: are:

$$
\begin{array}{ll}
\text { Linear } & \cos (\alpha)=1-s / r \\
\text { Concave arc } & \cos (\alpha)=1-s / r-\Gamma \\
\text { Convex arc } & \cos (\alpha)=1-s / r+\Gamma \tag{3}
\end{array}
$$

where $\Gamma=s(r-0.5 s) /(R r)$, and s, r and R are the stepover distance. cutter radius and circular cutting path radius respectively. It can be observed that $\Gamma \geq 0$ since $2 r \geq s$, and α decreases as s decreases.

Moreover, diflerent cutting modes can be discened by the following rules:

If $\mathrm{CSA}=180^{\circ}$, the cutter is performing a slot cutting operation.

If $90<$ CSA $<180^{\circ}$, the cutter is subject to both upcutting force on one side and down-cutting force on another side,

If CSA $\leq 90^{\circ}$, there are two possible cases. Case I: The cutter is performing up-cutting. This case occurs when the table feeds the workpiece in the opposite direction to the cutter rotation as shown in Fig. 7(a). The chip formation begins from nil to a maximum thickness as the tooth leaves the workpiece. Case 2: The cutter is performing down-cutting. This case occurs when the table feeds the workpiece in the same direction as the cutter rotation as shown in Fig. 7(b). The chip thickness is maximum at the beginning and gradually reduces to nil as the cutter exits the material.

An are segment can be classified as either clockwise (CW) or counterclockwise (CCW) depending on its traversal direction wilh respect to the starting point S and ending point E (Fig. 8). Based on the possible connection of the tool path entity and their traversal order of the three basic types of tool path geometry (Fig. 8), nine different corner types can be formed as

Fig. 7. Up cul and down cou operations.

Fig. 8. Tool path geomerries.

GEOMIETR TVPE	LINE	$\begin{aligned} & \text { CCW } \\ & \text { ARC } \end{aligned}$	$\begin{aligned} & \text { CW } \\ & \text { ARC } \end{aligned}$
LINE	\rightarrow	\rightarrow	
$\begin{aligned} & \text { CCW } \\ & \text { ARC } \end{aligned}$	\rightarrow	T	
$\begin{aligned} & \text { CW } \\ & \text { ARC } \end{aligned}$	\rightarrow		7

He 9. Different comer types.

shown in Fig. 9.

As mentioned in section I and judged from equation 3, convex comers do not introduce drastic rise of chip load problem. Hence only concave comers are considered. Besides cormer shape, the geonsetry of the previous and current tool paths also affects the corner cutting conditions signilicantly because the remaining stock material is governed by the geometry of the previous tool path. We therefore studied the following three tool path cases for deriving the expression of $\operatorname{CS} A$ in concave corner region.

3.1. Classification of corner cases

Based on the geometric contiguration of the previous and current tool centre paths, three different corner cases can be identified:

Case 1: Both previous and current tool centre paths have no joining fillet at conner (Fig. 10(i)).
Case 2: Previous tool centre path has mo joining fillet but current tool centre path has joining fillet at comer (Fig. lo(ii)), and
Case 3: Both previous and current tool centre paths have joining fillets at corner (Fig. iofiii)).

- Case 1: This case occurs when the cutter radius is smatler than or equal to the corner radius of the pocket. Nine possible corner shapes for this case are shown in Fig. Il(i). For explanation purpose, the case shown in Fig. Il(i) (a) is used. From the enlarged view shown in Fig. 12, it can be seen that the previous tool centre path i.s indicated by segments $A B$ and $B C$ while the current tool centre path is shown by segments $D E$ and $E F$. Segments GH. H/ and $/ J$ represent the remaining stock boundary swept by the cutter when the cutter centre moves along the previous tool center path. Two intemedrate points of interest. D_{1} and E_{6} are introduced in the ligure. Point $D_{\text {, lies on }} D E$ and represents the particular cutter centre position when the cutter boundary intersects point H which is created by a perpendicular projection from point B to $G H$. Similarly, point E_{1} lies on EF such that the culter boundary intersects point I which is formed by projecting a line perpendicularly from poine B to $/ / \%$
- Case 2: This case occurs when the cutter radius is much smaller than the comer radius of the pocket. Nine possible corner shapes for this case are displayed in Fig. 11 (ii). The case shown in Fig. Il(ii) (a) is enlarged in Fig. 13 for the following explanation. Segments $A B$ and $B C$ represent the previous tool centre path while segments $D F, E F$ and $F G$ display the current tool centre path. Scgments $/ I /, J$ and $J K$ represent the remaining stock boundary swept by the cutter when the cutter centre moves along the previous tool center path. Point D_{1} lies on $D E$ and represents the particular cutter center position when the cutter boundary intersects

Fig. 10. Possible corner cases.

Fig. 11. Nine possible comer shapes for each of the three cases.

Fig. 12. Diflerem CSA zones lor case I.
point $/$. Point l is made by the perpendicular projection from point B to $H /$. Similarly, point E_{1} lies on $E F$ such
that the cutter boundary intersects point J which is made by a line normally projected from point B to $J K$.

- Case 3: This case occurs when both the previous and current tool centre paths have a specified fillet radius. Nine possible corner shapes for this case are depicted in Fig. Il(iii). Fig. I4 shows the enlarged view of the first case shown in Fig. 11 (iii) (a) for exptanalion purpose. Scgments $A B, B C$ and $C D$ show the previous tool centrc paths while segments $E F, F G$ and $G H$ illustrate the current tool centre paths. Segments $I J . J K$ and $K L$ represent the remaining stock boundary swept by the cutter when the cutter centre moves along the previous tool center path. Point E_{1} lies on $E F$ and indicates the particular cutter centre position when the cutter boundary intersects point J. Point J is made by the perpendicular projection from point O to J. Similarly, point G_{1} lies on $G H$ and represents the cutter centre position when the cutter boundary intersects point K which is created by projecting a perpendicular line from point O to $K L$.

Fiy. 13. Diflerent CSA zones for case 2.

Fig. 14. Different CSA zones for case 3.

3.2. Defining different CSA zones

According to the identified corner cases. the cutting stages for each corner case were scrutinized and different zones of CSA for the three exemplary corner cases were defined below.
Case 1: Four CSA zones as shown by the shaded regions in Fig. 12 can be defined and summarized in Table 1.
Case 2: Five CSA zones as shown by the shaded
regions in Fig. 13 can be defined and summarized in Table 2.
Case 3: Five CSA zones as shown by the shaded regions in Fig . 14 can be defined and summarized in Table 3.

3.3. Special CSA calculation procedures

Determination of the CSA values for some portions of the comer tool path segments mentioned above

Table 1. Scrutiny of CSA zones for case 1

Zone	Description	Villue of CSA	Determination of CSA value
1	Cortesponds to the region machined when the culter centre moves from points D to D_{1}.	Constant	If $D O_{1}$ is a line. determine by equation (1). else if $D D_{1}$ is a CCW arc. determine by equation (2), else $D E^{2}$, is a CW arc. decermine by equation (3).
2	Corresponds to the region machined when the cutter centre moves from points D_{1} to E.	Varying	By the special procedure described in section 3.3.1
3	Conresponds to the region machined when the cutter centre moves from points E to E_{1}.	Varying	By the special procedure described in section 3.3.1
4	Corresponds to the region machined when the culler centre moves from points E_{1} to F.	Constant	If $E_{1} F$ is a line. determine by equation (I). else if $E_{1} F$ is a CCW arc, determine by equation (2), else $E_{1} F$ is a CW arc. determine by equation (3).

Table 2. Scruliny of CSA zones for case ?

Zone	Description	Value of CSA	Determination of CSA value
1	Corresponds to the region machined when the cutter centre moves from points D to D_{1}.	Constant	If $D D_{1}$ is a line. determine by equation (1). else if $D D_{1}$ is a CCW arc, efermine hy equation (2). else $D D_{1}$ is a CW arc. decermine by equation (3).
2	Corresponds to the region machined when the cutter centre moves from poinss D_{1} to F.	Varrying	By the special procedure deseribed in section 3.3.1
3	Corresponds to the region machined when the cutter centre moves from points E of E.	Constant	By cquation (2) because the cuter is basically cunting along a CCW arc.
4	Conesponds to the region machined when the cutter centre moves from points E_{1} to F.	Varying	If $J K$ is a line, determine by the special procedure described in section 3.3.2. Otherwise. determine by the special procedture described in secrion 3.3.1.
5	Contexponds to the region machined when the cutter centre moves from points F of G.	Constant	If $F G$ is a line. determine by equation (1), else if $F G$ is a CCW arc, determine by equation (2). else $F C$ is a CW arc. decennine by equation (3).

Table 3. Scrutiny of CSA zones for case 3

Zonc	Description	Value of CSA	Determination of CSA value
1	Conesponds to the region machined when the cutter centre moves from points E to E_{1}.	constant	If $E E_{1}$ is a line, determine by equation (I). else if $E E_{1}$ is a CCW arc, determine by equation (2), else $E E$, is il CW arc. determine by equalion (3).
2	Corresponds to the region machined when the cutter centre moves firm points E_{1} to F :	Varying	By the special procedure described in section 3.3.1
3	Corresponds to the region machined when the cutce centre moves from points F to G.	Varying	By the special procedure described in section 3,3.1
4	Corresponds to the region machined when the cutter centre moves from points G to G_{1}.	Varying	By the special procedure deserited in section 3.3.1
5	Corresponds to the region machinted when the cutter centre moves from points G_{1} o H .	constant	If $G_{1} H$ is a line. determine by equation (1), else if $G_{1} H$ is a $C C W$ are, determine by equation (2), else $G_{1} H$ is a CW are, determine by equation (3).

Fig. 15. CSA for two circle case.
requires more detailed analysis.
Lel puint $/$, be the intersection point made between the cutter boundary and the currently machined slock boundary as shown in Fig. 15, and point $/ 2$ be the intersection point made between the cutter boundary and the previously machined stock boundary. It can be observed that if points I_{1} and I_{2} are found, CSA can be determined simply by using cosine rulc.
Point $/$, can be determined easily by projecting a line from the current cutter center location G_{1}, normal to the current hool centre path segment and intersecting the currently machined slock boundary.
However, since point I_{2} can be formed by two possible cases: I) intersection between two circles (i.e. current cutter boundary intersects an are segment in previously machined stock boundary) or 2) intersection between a line and a circle (i.e. current cutter boundary intersects a line segment in previously machined stock boundary), its determination requires the following 1 wo different sets of procedures.

3.3.1. Intersection of two circles case

Consider two circles shown in Figs. 15 and 16 with centers G_{1} and G_{2} and radii r_{1} and r_{2} respectively. Let M be the intersection point made between the line $G_{1} C_{2}$ and the common chord of the two circles.
Let γ be the inchuded imgle between line $G_{1} I_{1}$ and line $G_{1} G_{2}$, and β be the included angle between line $G_{1} I_{2}$ and line $G_{1} C_{2}$. The CSA, represented by a, can be determined by
Case A(Fig. 15(a)): If $G_{1} G_{2}$ has not been parallel to (,$/ 1$, when the cutter entering the corner, $\alpha=$ $\gamma-\beta$.
Case $\mathrm{B}\left(\right.$ Fig. I5(b)): If $G_{1} C_{2}$ is parallel to $G_{1} I_{1}$ when the cutter entering the comer, $\gamma=180$ degrees and $\alpha=\gamma-\beta$.
Case $\mathrm{C}\left(\mathrm{Fig}\right.$. 15(c)): If $G_{1} G_{2}$ has once been parallel to $O_{1}, /$, when the cutter entering the corner, α $=360^{\prime \prime}-(\gamma+\beta)$.
γ is determined by the equation:
$\cos (\gamma)=\left\langle G_{1} I_{1} \cdot G_{1} G_{2}\right\rangle /\left(\left|G_{1} I_{1}\right|\left|G_{1} G_{2}\right|\right)$ where $<\cdot>$ and II are dot product and magnitude operator respectively. $G_{1} I_{1}$ is the line vector from point G_{1} to point $/_{1}$. Similarly, $G_{1} G_{2}$ is the line vector from point G_{1} to point G_{7}.

Fig. 16. Circles with different radii.
β call be determined by the following rule
If $r_{1}=r_{2}$ (this means the two circles have equal diameters)
then $\cos (\beta)=\left|M G_{1}\right| / r_{1}\left(\operatorname{or} \cos (\beta)=\left|M G_{2}\right| / r_{2}\right)$ where point M ties on the mid-point of $G_{1} G_{2}$.
else if $r_{1} \neq r_{2}$ (this means the two circles have unequal diameters as shown in Fig. 16)
then $\cos (\beta)=\left\{\left(G_{1} G_{2}\right)^{2}+\left(r_{1}\right)^{2}-\left(r_{2}\right)^{2}\right\} / 2\left(G_{1} G_{2}\right)\left(r_{1}\right)$
3.3.2. Intersection of a line and a circle case

Consider a circle of radius r with center $G\left(x_{c}, y_{c}\right)$ and a line L_{2} with equation a. $x+b . y+c=0$ shown in Fig. 17. Let point S be the closest distance point between circle center G and line L_{2}, β be included angle between line $G I_{2}$ and line $G S, \gamma$ be the included angle between line $G: S$ and $G /$. Hence, it cat be observed that $\alpha=\gamma+\beta$.
β can be determined by $\cos (\beta)=|C S| / r$ where $I \mid$ is the magnitude operator and $|G S|=$ the absolute value of ($\left.(a . x c+b . y c+c) / \sqrt{a^{2}}+b^{2}\right)$, $a . b$ and c are the coefficients of line L_{2}. The calculation of distance $G S$ is obtained by considering the normal distance of the point G from the line L_{2}.
γ can be determined by tan $(\gamma)=\left(m_{1}-m_{1}\right) /\left(1+m_{1} \cdot m_{2}\right)$ where m_{1} is the slope of the line $f_{1} G$ and m_{2} is the slope of a line normal to line L_{2}.

Fig. 17. CSA for a line and a circle case.

Fig. 18. Modeling the cuter swept illgle for 2 coner cases.

If the calculated α in sections 3.3.1 or 3.3.2. is greater than 180 degrees, α will be automatically set to 180 degrees since this is not the maximum possible CSA, indicating that the cutter is performing a slot cutling operation.

3.4. Plotting the change of CSA (Fig. 18(a))

The calculated CSA values for the exemplary corners shown in Figs. 12, 13 and 14 are plotted graphically in Figs. 19(a), (b) and (c) respectively. The corner angle and stepover distance for Figs. 12, 13 and 14 are the same. The comer ingle and cutter diameter are 46 degrees and 10 mm respectively. The stepover distance and fillet radius used are both 2 mm .

4. Discussion of results

It can be seen from Fig. 19(a) that as the cutter moves from the linear tool path into the corner, the CSA rises very rapidly, reaching a maximum of 180° at the middle part of the comer. and then falls off vertically as the cutter leaves the comer. This vividly shows that without round fillets added to the tool centre paths, the chip load at cornering cut will increase momentarily as indicated by the sharp "spike" shape of the CSA plot. This will produce adverse machining results and even tool breakage especially when performing high speed machining.

Fig. 19(b) represents the case that a circular fillet has been introduced to the current tool centre path. Since there is no fillet in the previous tool centre path, the stock material left behind for the cument filleted tool path to remove is effectively less. Hence. the rise of CSA in zone 2 is less rapid. Most importantly, there is a stable zone 3 in which the maximum CSA value is significantly redwed to about $100^{\prime \prime}$. The decrease of the CSA value in zone 4 is also more gentle. Comparing with the plot in Fig. 19(a), it can be seen that the middle part shape of the CSA plot in Fig. 19(b) has been stretched borizontally. This indicates a beneficial effect as it implies that the chip load during corner cutting can be suppressed and maintained more steady in this case.

Fig. 19. Examples for modeling the cutter swept angle for lifferent comer cases.

It can be observed from Fig. 19(c) that CSA rises steadily to a maximum of about 150° and then slides down gently without exhibiting a constant CSA zone. The overall CSA plot is stretched horizontally. In comparison. the maximum CSA obtained in Jig. 19(c) is greater than that in Fig. 19(b). It is because, after joining a fillet in the previous tool center path. the stock material left behind for the current lilleted tool path to remove becomes greater.

Fig. 20 shows the experimental cutting force and simulated CSA result for the line-line corner for the mentioned three cases. The first, second and third rows of the figure represent the result of Case I, Case 2 and Casc 3 for linc-line comer respectively. The cutting force result is shown in the frrst two columns. The third column shows the simulated CSA result by using the proposed CSA modeling scheme. The experimental settings for column I and column 2 are denoted by
parameters Pa and Pb respectively. $\mathrm{Pa}=($ Spindle speed $=1500 \mathrm{rpm}$, Feedrate $=100 \mathrm{~mm} / \mathrm{min}), \mathrm{Pb}=(1200 \mathrm{rpm}$, $150 \mathrm{~mm} / \mathrm{min}$). It can be observed from the figure that the inherent shape of cutting force graphs is directly proportional to the simulated CSA graphs. The higher the metal removal rate, the more similar is the shape between culling force graphs and CSA graphs. Similarly, the experimental and simulated result for CCW arcCW are corner of an included angle of 53 degrees (Fig. 18(b)) is plotted in Fig. 21. The cutting lorce result also agrees with the previous CSA simulated result and analysis.

It should be noted that the plotted results for these three exemplary cases for either lime-line corner or CCW arc- CW arc corner cannot fully reptesent the other cases because of the following four lactors. Firstly, different tool path geometries can alter the shape of the initial and final zones of the ligures. Secondly. different

Sampling points
Cutting force and simulated CSA result for comer (a) of Case 1

cutter resistance when milling concave corners. The instantaneous cutter swept angle CSA is considered as a suitable parameter for sludying chip load. A classitication based on a combination of different corner boundary geometries and tool centre path geometries is established. Based on this classification, a detailed analysis of CSA at different intemediate stages of corner culling is conducted. The mathematical equations for evaluating CSA in different cutting zones are also deduced.

Graphical plotting of the CSA values calculated by the derived equations can be used to explain the severe Iluctuation of culting forces in cornering cut. Cutting force measuring experiments have verified the direct correlation between the CSA and the actual cutting resistance incurred. The established CSA modeling scheme will be an important tool for supporting investigation of the problems of cornering cut. Furthermore, possible solutions for solving corner-cutting problems have also been reviewed. One distinct advantage of modeling the CSA is to facilitate the optimization of milling conditions by saving actual machining cosi and time.

Acknowledgements

The authors express their gratitude to the Department of Mechanical Engineering of the University of Hong Kong for providing all the software and hardware facilities as required in this research.

References

II] Choy. H. S. and Chan, K. W. (2002), A comer-looping based tool path for pocket milling, Conputer-Aided Design. 35(2), 155-166.
|2| Fussell, B. K., Jerard, R. B. and Hemmell, J. G. (200)),

Robust feedrate selection for 3-Axis NC machining using discrete models, Joumal of Monufacturing Science and Engineering, Transactions of the ASME. 123. 214-224.
[3] Hinduaa, S., Ma, Y. S. and Barrow, G. (1995), Determination of radial width of cut and culting motes in milling, International Joumat of Machine Tools \& Manufacture. 35(1), 689-699.
$14 \mid$ Hinduja, S., Roaydi. A., Philimis, P. and Barrow, G. (2001). Determination of optimum cutter diameter for machining 2-1/2 D pockets, Intemational Journat of Muchine Tools \& Manufacture, 41, 687-702.
[5] Iwabe, II., Fujii, Y., Saito, K. and Kishinami, T. (1989), Sludy on comer cul by end mill - analysis of cutting mechanism and new cutting method at inside corner, In Japanese, Journal of Japan Socien of Precisiont Engineering, 55(5), 841-846.
|6| Kline, W. A., Devor, R. E. and Lindberg, J. (1982), Prediction of cutting forces in end milling with application to comering cuts, International Joumal of Machine Tool Design and Research. 22, 7-22.
171 Kranker, T. R. (1992), Pocket milling with tool engagement delection, Journal of Manufacturing Systems, 11(2), 114123.

181 Spence, A. D. and Altintas, Y. (1994). A solid modeller bated milling process simulation and planning system, Journal of Engineering for Industry, 116, 61-69.
19| Stori. J. A. and Wright, P. K. (2000). Constant engagement tool-palls generation for convex geometrics, Journal of Monufucturing Systems. 19(3). 172-184.
$[10 \mid$ Tarng. Y. S. and Shyur. Y. Y. (1993), Idemification of radial depth of cut in numerical control pocketing roulines, Intermational journal of Machine Tools \& Manufacture, 33(1), 1-11.
[11] Tlusty, J., Smith, S. and Zarnudio, C. (1990), New NC. rourines for quality in milling, Annals of the CIRP, 39(1). 517-521.
[12] Tsiai, M. D., Takala, S., Inui. M., Kimura, F. and Sata, T. (1991), Operation planning based on cutting process models. Annuls of CIRP, 40(1), 95-98

[^0]: Corresponding atuhor:
 Tel: +852.2859-2642
 Fax: +852-2858-5415
 E-mail: hangshan@likem.com

