• Title/Summary/Keyword: cutouts

Search Result 60, Processing Time 0.024 seconds

2D Design Feature Recognition using Expert System (전문가 시스템을 이용한 2차원 설계 특징형상의 인식)

  • 이한민;한순흥
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.2
    • /
    • pp.133-139
    • /
    • 2001
  • Since a great number of 2D engineering drawings are being used in industry and at the same time 3D CAD becomes popular in recent years, we need to reconstruct 3D CAD models from 2D legacy drawings. In this thesis, a combination of a feature recognition method and an expert system is suggested for the 3D solid model reconstruction. Modeling primitives of 3D CAD systems are recognized and constructed by using the pattern matching technique of the features modeling. Additional information for the 3D model reconstruction can be generated by extracting symbols or text entities which are related to form entities. For complex and indefinite cases which cannot be solved by the process of feature recognition, an expert system with a rule base has been used for decision-making. A 3D reconstruction system which recognizes 2D DXF drawing files has been implemented where models composed with protrusions, holes, and cutouts can be handled.

  • PDF

Free Vibration Analysis of Rectangular Plate with Multiple Rectangular Cutouts by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 여러 개의 직사각형 구멍을 갖는 직사각형 평판의 자유진동해석)

  • Kwak, Moon-K.;Song, Myung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.881-887
    • /
    • 2007
  • This paper is concerned with the vibration analysis of a rectangular plate with multiple rectangular holes. Even though there have been many methods developed for the addressed problem, they suffer from computational time. In this paper, we applied the Independent Coordinate Coupling Method(ICCM) to the addressed problem, which was developed to compute natural vibration characteristics of the rectangular plate with a rectangular hole and proven to be computationally effective. The ICCM is based on Rayleigh-Ritz method but utilizes independent coordinates for each hole domain. By matching the deflection conditions for each hole imposed on the expressions, we can easily derive the reduced mass and stiffness matrices. The resulting equation is then used for the calculation of the eigenvalue problem. The numerical results show the efficacy of the Independent Coordinate Coupling Method.

Buckling and Postbuckling Behavior of Cylindrical Composite Panels with a Cutout (구멍을 가지는 원통형 복합적층 패널의 좌굴 및 좌굴후 거동)

  • 임진승;조명래;양원호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.272-281
    • /
    • 1999
  • Cylindrical panels are widely used as aircraft fuselages and rocket etc, and the cutouts for weight reduction or wiring at such structures tend to cause the stress concentration and the local radial displacement so that seriously effect the stability of structures. In this paper, for the cylindrical composite panel with coutout at the center, the buckling and postbuckling behaviour regarding the shape and size of cutout is analyzed by finite element method. Also the lamination mechanism , changing bending stiffness and fiber orientation angle variation are researched to be regarded in studying the laminated composite materials.

  • PDF

Free vibration of laminated composite skew plates with central cutouts

  • Lee, Sang-Youl;Park, Taehyo
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.587-603
    • /
    • 2009
  • We performed a free vibration analysis of skew composite laminates with or without cutout based on the high-order shear deformation plate theory (HSDT). The effects of skew angles and ply orientations on the natural frequencies for various boundary conditions are studied using a nonlinear high-order finite element program developed for this study. The numerical results are in good agreement with those reported by other investigators for simple test cases, and the new results reported in this paper show the interactions between the skew angle, layup sequence and cutout size on the free vibration of the laminate. The findings highlight the importance of skew angles when analyzing laminated composite skew plates with cutout or without cutout.

A Stress Concentration Analysis in Plates with Various Shaped Cutouts (유공형상에 따른 판의 응력 집중 해석)

  • Woo, Jin-Ho;Na, Won-Bae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.196-199
    • /
    • 2010
  • 본 연구는 판에 존재하는 유공형상에 따른 응력 집중 해석이다. 일반으로 판은 가공이 쉽고 제작이 편리하여 그 사용이 많다. 이러한 판의 연결에는 원형의 유공을 이용하는 경우가 많고 구조물의 중량감소를 목적으로 유공을 만드는 경우도 있다. 그러나 판에 존재하는 유공의 경우 응력 집중으로 인한 균열생성과 같은 단점을 가진다. 이를 보완하기 위해 유공부의 최적설계 및 응력해석과 같은 많은 연구들이 수행되고 있다. 본 연구에서는 원형, 정사각형과 정삼각형의 유공을 유한 요소 프로그램을 이용하여 시뮬레이션하고 유공형상에 따라 판에 발생하는 응답을 알아보았다. 또한 원형유공의 응답을 기준으로 정사각형과 정삼각형 유공의 모서리의 곡률반경을 변화시켰을 때 발생하는 응답을 비교하였다. 상용 유한 요소 프로그램인 ANSYS/Workbench를 사용하여 인장응력하의 유공판의 응답 해석을 수행하였으며 얻어진 결과를 유공의 형상, 곡률반경의 변화에 따라 분석하였다.

  • PDF

An approach for failure analysis of composite bridge deck systems with openings

  • Zhao, Lei;Karbhari, Vistasp M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.123-141
    • /
    • 2005
  • Design details pertaining to the connection between some recently developed fiber reinforced polymer (FRP) composite deck systems and the supporting girders require openings through cells of the deck. This significantly changes the stress distribution in these components. As a result, the conventional assumptions that deck designs are controlled by their stiffness, and not strength, needs a closer examination. This paper proposes an analytical method to investigate the stress states and failure mechanisms using a type of "global-local" modeling perspective, incorporating classical lamination theory and first ply failure criterion with use of appropriate stress concentration factors around the cutouts. The use of a "smeared-stress" approach is presented as a potential means of simplifying certain FRP specific complexities, while still enabling prediction of overall failure.

On forced and free vibrations of cutout squared beams

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.643-655
    • /
    • 2019
  • Perforation and cutouts of structures are compulsory in some modern applications such as in heat exchangers, nuclear power plants, filtration and microeletromicanical system (MEMS). This perforation complicates dynamic analyses of these structures. Thus, this work tends to introduce semi-analytical model capable of investigating the dynamic performance of perforated beam structure under free and forced conditions, for the first time. Closed forms for the equivalent geometrical and material characteristics of the regular square perforated beam regular square, are presented. The governing dynamical equation of motion is derived based on Euler-Bernoulli kinematic displacement. Closed forms for resonant frequencies, corresponding Eigen-mode functions and forced vibration time responses are derived. The proposed analytical procedure is proved and compared with both analytical and numerical analyses and good agreement is noticed. Parametric studies are conducted to illustrate effects of filling ratio and the number of holes on the free vibration characteristic, and forced vibration response of perforated beams. The obtained results are supportive in mechanical design of large devices and small systems (MEMS) based on perforated structure.

Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdraboh, Azza M.;Abdalla, Waleed S.;Alshorbagy, Amal E.
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.219-228
    • /
    • 2020
  • This work presents a modified continuum model to explore and investigate static and vibration behaviors of perforated piezoelectric NEMS structure. The perforated nanostructure is modeled as a thin perforated nanobeam element with Euler-Bernoulli kinematic assumptions. A size scale effect is considered by included a nonlocal constitutive equation of Eringen in differential form. Modifications of geometrical parameters of perforated nanobeams are presented in simplified forms. To satisfy the Maxwell's equation, the distribution of electric potential for the piezoelectric nanobeam model is assumed to be varied as a combination of a cosine and linear functions. Hamilton's principle is exploited to develop mathematical governing equations. Modified numerical finite model is adopted to solve the equation of motion and equilibrium equation. The proposed model is validated with previous respectable work. Numerical investigations are presented to illustrate effects of the number of perforated holes, perforation size, nonlocal parameter, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric nanobeams.

Numerical experiments on the determination of stress concentration factors in orthotropic perforated plates subjected to in - plane loading

  • Bambill, D.V.;Rossit, C.A.;Susca, A.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.549-561
    • /
    • 2009
  • As it is known, laminated composite materials are increasingly used in many technological applications, and in some instance, cutouts must be made into laminated panels for practical reasons, changing the stress distribution. The present study deals with the determination of the stress concentration factor that holes of square shape cause in an orthotropic plate subjected to distributed in - plane loading. Square holes of rounded corners in a rectangular plate are considered, and the effect of different combinations of axial and tangential forces applied to its middle plane at the external edges, is studied. The mutually perpendicular axes, which define the principal axes of orthotropy, are assumed in many different directions referred to the sides of the plate. Numerical experiments by means of a finite element code is performed, evaluating the influence of the fiber orientation with respect to the edges of the plate and the characteristics of the orthotropic materials since such structures do not exhibit easily predictable behavior.

On the Development of Lofts for Doubly Curved Sheet Metal Components

  • Prasad, K.S.R.K.;Selvaraj, P.;Ayachit, Praveen V.;Nagamani, B.V.
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.199-211
    • /
    • 2006
  • Practical automated flat pattern generation with inbuilt production features for doubly curved sheet metal components (SMCs) is addressed here utilizing a new and unique Point Transformation Algorithm (PTA). This is the third in the series of papers on practical Flat Pattern Development (FPD) [8] and Production Loft Generation Systems (PLGS) [9] complementing the pioneering work [6,7]. In the first two publications, automated loft generation programs have addressed sheet metal components having a Principal Flat Surface (PFS) only. The flat pattern development of 3-D components that do not have the flat surface(termed as Non-PFS components) having complex features of double curvature in addition to cutouts and nibbled holes typical of aircraft components were so far not addressed due to lack of relevant published algorithms. This paper traces the evolution of developments and provides the record of fully illustrated, automated loft generation scheme for aircraft SMCs including the Non-PFS components which underwent validation through production tests by sponsors. Details of some of the unique features of the system like simplified surface model generation, termed as topological model and powerful algorithms deployed with potential for CAD/CAM applications are included.