• Title/Summary/Keyword: customer classification.

Search Result 286, Processing Time 0.028 seconds

Construction of Customer Appeal Classification Model Based on Speech Recognition

  • Sheng Cao;Yaling Zhang;Shengping Yan;Xiaoxuan Qi;Yuling Li
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.258-266
    • /
    • 2023
  • Aiming at the problems of poor customer satisfaction and poor accuracy of customer classification, this paper proposes a customer classification model based on speech recognition. First, this paper analyzes the temporal data characteristics of customer demand data, identifies the influencing factors of customer demand behavior, and determines the process of feature extraction of customer voice signals. Then, the emotional association rules of customer demands are designed, and the classification model of customer demands is constructed through cluster analysis. Next, the Euclidean distance method is used to preprocess customer behavior data. The fuzzy clustering characteristics of customer demands are obtained by the fuzzy clustering method. Finally, on the basis of naive Bayesian algorithm, a customer demand classification model based on speech recognition is completed. Experimental results show that the proposed method improves the accuracy of the customer demand classification to more than 80%, and improves customer satisfaction to more than 90%. It solves the problems of poor customer satisfaction and low customer classification accuracy of the existing classification methods, which have practical application value.

Customer Level Classification Model Using Ordinal Multiclass Support Vector Machines

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Asia pacific journal of information systems
    • /
    • v.20 no.2
    • /
    • pp.23-37
    • /
    • 2010
  • Conventional Support Vector Machines (SVMs) have been utilized as classifiers for binary classification problems. However, certain real world problems, including corporate bond rating, cannot be addressed by binary classifiers because these are multi-class problems. For this reason, numerous studies have attempted to transform the original SVM into a multiclass classifier. These studies, however, have only considered nominal classification problems. Thus, these approaches have been limited by the existence of multiclass classification problems where classes are not nominal but ordinal in real world, such as corporate bond rating and multiclass customer classification. In this study, we adopt a novel multiclass SVM which can address ordinal classification problems using ordinal pairwise partitioning (OPP). The proposed model in our study may use fewer classifiers, but it classifies more accurately because it considers the characteristics of the order of the classes. Although it can be applied to all kinds of ordinal multiclass classification problems, most prior studies have applied it to finance area like bond rating. Thus, this study applies it to a real world customer level classification case for implementing customer relationship management. The result shows that the ordinal multiclass SVM model may also be effective for customer level classification.

Hybrid Case-based Reasoning and Genetic Algorithms Approach for Customer Classification

  • Kim Kyoung-jae;Ahn Hyunchul
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.209-212
    • /
    • 2005
  • This study proposes hybrid case-based reasoning and genetic algorithms model for customer classification. In this study, vertical and horizontal dimensions of the research data are reduced through integrated feature and instance selection process using genetic algorithms. We applied the proposed model to customer classification model which utilizes customers' demographic characteristics as inputs to predict their buying behavior for the specific product. Experimental results show that the proposed model may improve the classification accuracy and outperform various optimization models of typical CBR system.

A Machine Learning-based Customer Classification Model for Effective Online Free Sample Promotions (온라인 무료 샘플 판촉의 효과적 활용을 위한 기계학습 기반 고객분류예측 모형)

  • Won, Ha-Ram;Kim, Moo-Jeon;Ahn, Hyunchul
    • The Journal of Information Systems
    • /
    • v.27 no.3
    • /
    • pp.63-80
    • /
    • 2018
  • Purpose The purpose of this study is to build a machine learning-based customer classification model to promote customer expansion effect of the free sample promotion. Specifically, the proposed model classifies potential target customers who are expected to purchase the products included in the free sample promotion after receiving the free samples. Design/methodology/approach This study proposes to build a customer classification model for determining customers suitable for providing free samples by using various machine learning techniques such as logistic regression, multiple discriminant analysis, case-based reasoning, decision tree, artificial neural network, and support vector machine. To validate the usefulness of the proposed model, we apply it to a real-world free sample-based target marketing case of a Korean major cosmetic retail company. Findings Experimental results show that a machine learning-based customer classification model presents satisfactory accuracy ranging from 70% to 75%. In particular, support vector machine is found to be the most effective machine learning technique for free sample-based target marketing model. Our study sheds a light on customer relationship management strategies using free sample promotions.

Feature Selection Effect of Classification Tree Using Feature Importance : Case of Credit Card Customer Churn Prediction (특성중요도를 활용한 분류나무의 입력특성 선택효과 : 신용카드 고객이탈 사례)

  • Yoon Hanseong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • For the purpose of predicting credit card customer churn accurately through data analysis, a model can be constructed with various machine learning algorithms, including decision tree. And feature importance has been utilized in selecting better input features that can improve performance of data analysis models for several application areas. In this paper, a method of utilizing feature importance calculated from the MDI method and its effects are investigated in the credit card customer churn prediction problem with classification trees. Compared with several random feature selections from case data, a set of input features selected from higher value of feature importance shows higher predictive power. It can be an efficient method for classifying and choosing input features necessary for improving prediction performance. The method organized in this paper can be an alternative to the selection of input features using feature importance in composing and using classification trees, including credit card customer churn prediction.

An Application of Support Vector Machines to Customer Loyalty Classification of Korean Retailing Company Using R Language

  • Nguyen, Phu-Thien;Lee, Young-Chan
    • The Journal of Information Systems
    • /
    • v.26 no.4
    • /
    • pp.17-37
    • /
    • 2017
  • Purpose Customer Loyalty is the most important factor of customer relationship management (CRM). Especially in retailing industry, where customers have many options of where to spend their money. Classifying loyal customers through customers' data can help retailing companies build more efficient marketing strategies and gain competitive advantages. This study aims to construct classification models of distinguishing the loyal customers within a Korean retailing company using data mining techniques with R language. Design/methodology/approach In order to classify retailing customers, we used combination of support vector machines (SVMs) and other classification algorithms of machine learning (ML) with the support of recursive feature elimination (RFE). In particular, we first clean the dataset to remove outlier and impute the missing value. Then we used a RFE framework for electing most significant predictors. Finally, we construct models with classification algorithms, tune the best parameters and compare the performances among them. Findings The results reveal that ML classification techniques can work well with CRM data in Korean retailing industry. Moreover, customer loyalty is impacted by not only unique factor such as net promoter score but also other purchase habits such as expensive goods preferring or multi-branch visiting and so on. We also prove that with retailing customer's dataset the model constructed by SVMs algorithm has given better performance than others. We expect that the models in this study can be used by other retailing companies to classify their customers, then they can focus on giving services to these potential vip group. We also hope that the results of this ML algorithm using R language could be useful to other researchers for selecting appropriate ML algorithms.

Classification Tree-Based Feature-Selective Clustering Analysis: Case of Credit Card Customer Segmentation (분류나무를 활용한 군집분석의 입력특성 선택: 신용카드 고객세분화 사례)

  • Yoon Hanseong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2023
  • Clustering analysis is used in various fields including customer segmentation and clustering methods such as k-means are actively applied in the credit card customer segmentation. In this paper, we summarized the input features selection method of k-means clustering for the case of the credit card customer segmentation problem, and evaluated its feasibility through the analysis results. By using the label values of k-means clustering results as target features of a decision tree classification, we composed a method for prioritizing input features using the information gain of the branch. It is not easy to determine effectiveness with the clustering effectiveness index, but in the case of the CH index, cluster effectiveness is improved evidently in the method presented in this paper compared to the case of randomly determining priorities. The suggested method can be used for effectiveness of actively used clustering analysis including k-means method.

Fuzzy KANO Model: Fuzzy Set-Based Classification of Customer Requirements (Kano 모형에 기반한 소비자 요구사항 분류: 퍼지 접근방법)

  • 임정훈;민대기;김광재
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.98-113
    • /
    • 2003
  • Kano model distinguishes three types of customer requirements, namely, one-dimensional quality, must-be quality, and attractive quality. There are a few methods for classifying a given customer requirement into one of the Kano's quality elements. However, the existing methods have a common limitation in that they are based on Kano evaluation table. Kano evaluation table is not always effective for the classification task, and suffers from a significant information loss. This paper proposes an alternative to Kano's evaluation table and a new classification scheme based on fuzzy set concept. The proposed method is illustrated using a case study on the ADSL service.

Development of Representative Curves for Classified Demand Patterns of the Electricity Customer

  • Yu, In-Hyeob;Lee, Jin-Ki;Ko, Jong-Min;Kim, Sun-Ic
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1379-1383
    • /
    • 2005
  • Introducing the market into the electricity industry lets the multiple participants get into new competition. These multiple participants of the market need new business strategies for providing value added services to customer. Therefore they need the accurate customer information about the electricity demand. Demand characteristic is the most important one for analyzing customer information. In this study load profile data, which can be collected through the Automatic Meter Reading System, are analyzed for getting demand patterns of customer. The load profile data include electricity demand in 15 minutes interval. An algorithm for clustering similar demand patterns is developed using the load profile data. As results of classification, customers are separated into several groups. And the representative curves for the groups are generated. The number of groups is automatically generated. And it depends on the threshold value for distance to separate groups. The demand characteristics of the groups are discussed. Also, the compositions of demand contracts and standard industrial classification in each group are presented. It is expected that the classified curves will be used for tariff design, load forecasting, load management and so on. Also it will be a good infrastructure for making a value added service related to electricity.

  • PDF

Design of a Forecasting Model for Customer Classification in the Telecommunication Industries (통신 산업의 고객 분류를 위한 예측 모델 설계)

  • Lee Byoung-Yup;Joh Kyu-Ha;Song Seok-Il;Yoo Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.1
    • /
    • pp.179-189
    • /
    • 2006
  • Recently, according to the development of computer technology, a large amount of customer data have been stored in database. Using such data, decision makers extract the useful information to make a valuable plan with data mining. In this paper, we design a forecasting model that classifies the exiting customers in the telecommunication industries using the classification rule, one of the data mining technologies. In other words, this paper builds a model of customer loyalty detection and analyzes customer patterns in mobile communication service market with data mining using neural network and regression methods. This model improves the relationship of customers and enterprises. As a result, the enterprise creates the profits from many customers and the customer receives more benefits from the enterprise.

  • PDF