• Title/Summary/Keyword: customer classification

Search Result 286, Processing Time 0.029 seconds

Fine-tuning Method to Improve Sentiment Classification Perfoimance of Review Data (리뷰 데이터 감성 분류 성능 향상을 위한 Fine-tuning 방법)

  • Jung II Park;Myimg Jin Lim;Pan Koo Kim
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.44-53
    • /
    • 2024
  • Companies in modern society are increasingly recognizing sentiment classification as a crucial task, emphasizing the importance of accurately understanding consumer opinions opinions across various platforms such as social media, product reviews, and customer feedback for competitive success. Extensive research is being conducted on sentiment classification as it helps improve products or services by identifying the diverse opinions and emotions of consumers. In sentiment classification, fine-tuning with large-scale datasets and pre-trained language models is essential for enhancing performance. Recent advancements in artificial intelligence have led to high-performing sentiment classification models, with the ELECTRA model standing out due to its efficient learning methods and minimal computing resource requirements. Therefore, this paper proposes a method to enhance sentiment classification performance through efficient fine-tuning of various datasets using the KoELECTRA model, specifically trained for Korean.

A Comparative Analysis of Ensemble Learning-Based Classification Models for Explainable Term Deposit Subscription Forecasting (설명 가능한 정기예금 가입 여부 예측을 위한 앙상블 학습 기반 분류 모델들의 비교 분석)

  • Shin, Zian;Moon, Jihoon;Rho, Seungmin
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.97-117
    • /
    • 2021
  • Predicting term deposit subscriptions is one of representative financial marketing in banks, and banks can build a prediction model using various customer information. In order to improve the classification accuracy for term deposit subscriptions, many studies have been conducted based on machine learning techniques. However, even if these models can achieve satisfactory performance, utilizing them is not an easy task in the industry when their decision-making process is not adequately explained. To address this issue, this paper proposes an explainable scheme for term deposit subscription forecasting. For this, we first construct several classification models using decision tree-based ensemble learning methods, which yield excellent performance in tabular data, such as random forest, gradient boosting machine (GBM), extreme gradient boosting (XGB), and light gradient boosting machine (LightGBM). We then analyze their classification performance in depth through 10-fold cross-validation. After that, we provide the rationale for interpreting the influence of customer information and the decision-making process by applying Shapley additive explanation (SHAP), an explainable artificial intelligence technique, to the best classification model. To verify the practicality and validity of our scheme, experiments were conducted with the bank marketing dataset provided by Kaggle; we applied the SHAP to the GBM and LightGBM models, respectively, according to different dataset configurations and then performed their analysis and visualization for explainable term deposit subscriptions.

The Classification System for Measuring Marketing Expenditure and Marketing Performance (마케팅지출과 마케팅성과의 측정을 위한 분류체계)

  • Jeon, In-Soo;Jeong, Ae-Ju
    • Asia Marketing Journal
    • /
    • v.11 no.1
    • /
    • pp.39-72
    • /
    • 2009
  • With the growing importance of accountability, it is getting necessary to test the impact of marketing expenditure on marketing performance. Including recent ROM, we can find a few researches about marketing accountability. But there are a few problems about definitions and metric of marketing expenditure and marketing performance. Therefore, by defining and analyzing the impact of marketing expenditure on marketing performance, we are going to set the classification scheme of marketing expenditure and marketing performance. Based on research findings, new definitions and metrics are proposed as follows. First, we suggest the classification scheme of marketing expenditure. Marketing expenditure is defined as expense accounts in the balance sheet for doing marketing tasks. Marketing expenditures includes many accounts, for example, marketing research, advertising, sales promotion, foreign market development, physical distribution, after services. Among these marketing investment, advertising expenses have a positive effect on marketing performance. Second, we suggest the classification scheme of marketing performance. Already, marketing performance has been defined as financial metrics, customer metrics, market metrics, and corporate social responsibility. But, in this study, we find that the process model is not relevant for explaining association between the performance metrics. The process model is a virtuous cycle: "customer metrics→market metrics→financial metrics→firm valuation metrics." But, in this study, it is not supported or a little significant association between these metrics. Based on these results, we suggest the balance model or flower model as the classification scheme of marketing performance.

  • PDF

A Study on the Service Quality Improvement by Kano Model & Weighted Potential Customer Satisfaction Index (Kano 모델 및 가중 PCSI를 통한 서비스품질 개선에 관한 연구)

  • Kim, Sang-Cheol
    • Journal of Distribution Science
    • /
    • v.8 no.4
    • /
    • pp.17-23
    • /
    • 2010
  • The Banking industry is expanding rapidly. To keep the competitive advantages, participating companies concentrate their resource to provide the distinguishable services by increasing the service quality. This study is to find that how three kinds of service quality(process, output, and service environment) affect on the customer satisfaction. In this paper, WPCSI (Weighted Potential Customer Satisfaction Index) was developed using Kano model and PCSI. Kano's model of service quality classification was used to improve customer satisfaction, customer satisfaction index was calculated. Customer satisfaction index was calculated using the existing potential for improving customer satisfaction index (PCSI Index) to complement the limitations of the weighted potential improve customer satisfaction index (WPCSI) were used. Analysis using PCSI improve the quality of service levels may be useful in assessing. However, this figure is a marginal degree of importance on customers and quality characteristics have been overlooked but has its problems. A service provided to customers with some important differences depending on the interpretation of the scope for improvement is to be classified. In other words, the level of customer satisfaction and the satisfaction of the current difference between the comparison factor for the company to provide information about the priority of the improvement was not significant. Companies are also considered important that the customer does not consider the uniform quality of service provided can be fallible. In this study, the weighted potential to improve it improve customer satisfaction index (WPCSI) proposed a new customer satisfaction index. This is for customers to recognize the importance of quality characteristics by weighting factors, to identify practical and improved priority to provide more useful information than has been. Weighted potentially improve customer satisfaction index (WPCSI) presented in this study by the customers aware of the importance of considering the quality factor is an exponent. The results, 'Employees' working ability', 'provided the desired service level', 'staff to handle this task quickly enough' to the customer of the factors had significant effects on satisfaction are met. On the other hand 'aggressiveness on the product description of employees', 'service environment as a whole, beautiful enough to' meet and shows no significant difference between satisfaction. But 'aggressiveness on the product description of employees' and reverse (逆) were attributable to the quality. Small dogs and overly aggressive products that encourage the customer dissatisfaction that can result in widening should be careful because the quality factor can be said. As a result, WPCSI is more effect to find critical factors which can affect customer satisfaction than PCSI. After that, we discuss effects and advantages of customer satisfaction using WPCSI. This study, along with these positive aspects, the limitations are implied. First, this study directly to the bank so that I could visit any other way for customers, utilizing the Internet or mobile to take advantage of the respondents were excluded from the analysis. Second, in survey questionnaires can help improve understanding of the measures will be taken. In addition to the survey targeted mainly focused on Seoul, according to a sample, so sampling can cause problems is the viscosity revealed intends.

  • PDF

Customer Characteristics Modeling for Each Load Pattern using the Database (데이터베이스를 이용한 부하패턴별 수용가 특징 모델링)

  • Lee, Young-Suk;Kim, Jae-Chul;Oh, Jung-Hwan;Yun, Sang-Yun;Park, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.416-418
    • /
    • 2001
  • This Paper presents the 2-step load cycle of daily load curve for representative load pattern of power distribution transformer. We decide the representative load pattern of distribution transformer in domestic using the pattern classification algorithm. The K-mean method is used for the pattern classification algorithm. The acquisition equipment of field load data is utilized for 96-sample distribution transformers and the field data is used in the construction of the database for the creation of daily load pattern.

  • PDF

Design of Contact Scheduling System(CSS) for Customer Retention (고객유지를 위한 접촉스케줄링시스템의 설계)

  • Lee, Jee-Sik;Cho, You-Jung
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.3
    • /
    • pp.83-101
    • /
    • 2005
  • Customer retention is one of the major issues in life insurance industry, in which competition is increasingly fierce. There are many things for the life insurers to do many things to retain the customers. One of those things is to make sure to keep in touch with all customers. When an insurance-planner resigned, his/her customers must be taken care of by some planner-assistants. This article outlines the design of Contact Scheduling System (CSS) that supports planner-assistants for contacting the customers. Planner-assistants are unable to share the resigned insurance-planner's experience and knowledge regarding the customer relationship management. The CSS developed by employing both Classification And Regression Tree (CART) technique and Sequential Pattern Mining (SPM) technique has a two-stage process. In the first stage, it segments the customers into eight groups by CART model. Then it generates contact scheduling information consisting of contact-purpose, contact-interval and contact-channel, according to the segment's typical contact pattern. Contact-purpose is derived by schedule-driven, event-driven, or business-rule-driven. Schedule-driven contact is determined by SPM model. In the operation of CSS in a realistic situation, it shows a practicality in supporting planner-assistants to keep in touch with the customers efficiently and effectively.

  • PDF

Study on Simulator for computing Demand Rate using Index of Transformer's Demand Rate (변압기 용량 지수를 이용한 수용률 산정 시뮬레이터 개발에 관한 연구)

  • Kim, Young-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.97-100
    • /
    • 2007
  • There are regulations on each building for its classification and It is corresponding determined contract demand. For transformer's capability calculation algorithm, cumulated power information of each customer is used to analysis the correlation between power usage and Demand Rate. By modeling this using Least Square Method, it can be targeted to recognize the pattern of transformer use in the past and make a prediction on it in the future.

  • PDF

A Study on The Customer Classification of the EC based on Bayesian Learning Model (베이지안 학습법에 기초한 전자상거래에서의 고객 성향 분류 연구)

  • Jeon, Jin-Ho;Lee, Gye-Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11c
    • /
    • pp.2149-2152
    • /
    • 2002
  • 활성화되고 있는 전자상거래에 있어서 단순히 정해진 정보를 고객에게 제공하는 범위를 벗어나 고객의 특성에 따라 고객에 맞는 정보를 제공함으로서 매출 신장을 통하여 이윤확대를 꾀할 수 있다. 그러므로 본 연구에서는 베이지안 학습법을 이용하여 회원고객의 특성에 따른 분류화를 통하여 잠재적 구매 고객에 대한 구매 스타일을 예측하여 타겟광고가 가능한 기법에 대해 연구하였다.

  • PDF

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

The Suitability of the Size Classification of Dress Shirts on the Market (시판 드레스셔츠의 치수 구분 적합성)

  • Han, Eun Joo;Kweon, Soo Ae;Choi, Jong Myoung;Song, Jae Min;Lim, Bo Youn
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.5
    • /
    • pp.695-702
    • /
    • 2015
  • This study provides basic data that are helpful to prepare a sizing system for dress shirts that improves the wearer's size fitness. The 16 different parts of the dress shirts were measured for 24 pieces of dress shirts with three kinds of size (95, 100 and 105) among the eight different brands on the market. The measurement sizes of the dress shirts analyzed the accuracy of the size information, size classification by size designation, and differences of size by brand. The results of the study were: 1. The size information of dress shirts differed from customer demand. 2. The size increments between size designations differed from each other even though measurement sizes of the dress shirts increased as the size designation increase. 3. Measurement sizes of the dress shirts were different between brands even for dress shirts of the same size designation. It is necessary that manufacturers secure an accurate and standardized sizing system and provide accurate information for the measurement sizes of dress shirts on an online shopping mall.