• 제목/요약/키워드: customer classification

검색결과 286건 처리시간 0.023초

Construction of Customer Appeal Classification Model Based on Speech Recognition

  • Sheng Cao;Yaling Zhang;Shengping Yan;Xiaoxuan Qi;Yuling Li
    • Journal of Information Processing Systems
    • /
    • 제19권2호
    • /
    • pp.258-266
    • /
    • 2023
  • Aiming at the problems of poor customer satisfaction and poor accuracy of customer classification, this paper proposes a customer classification model based on speech recognition. First, this paper analyzes the temporal data characteristics of customer demand data, identifies the influencing factors of customer demand behavior, and determines the process of feature extraction of customer voice signals. Then, the emotional association rules of customer demands are designed, and the classification model of customer demands is constructed through cluster analysis. Next, the Euclidean distance method is used to preprocess customer behavior data. The fuzzy clustering characteristics of customer demands are obtained by the fuzzy clustering method. Finally, on the basis of naive Bayesian algorithm, a customer demand classification model based on speech recognition is completed. Experimental results show that the proposed method improves the accuracy of the customer demand classification to more than 80%, and improves customer satisfaction to more than 90%. It solves the problems of poor customer satisfaction and low customer classification accuracy of the existing classification methods, which have practical application value.

Customer Level Classification Model Using Ordinal Multiclass Support Vector Machines

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Asia pacific journal of information systems
    • /
    • 제20권2호
    • /
    • pp.23-37
    • /
    • 2010
  • Conventional Support Vector Machines (SVMs) have been utilized as classifiers for binary classification problems. However, certain real world problems, including corporate bond rating, cannot be addressed by binary classifiers because these are multi-class problems. For this reason, numerous studies have attempted to transform the original SVM into a multiclass classifier. These studies, however, have only considered nominal classification problems. Thus, these approaches have been limited by the existence of multiclass classification problems where classes are not nominal but ordinal in real world, such as corporate bond rating and multiclass customer classification. In this study, we adopt a novel multiclass SVM which can address ordinal classification problems using ordinal pairwise partitioning (OPP). The proposed model in our study may use fewer classifiers, but it classifies more accurately because it considers the characteristics of the order of the classes. Although it can be applied to all kinds of ordinal multiclass classification problems, most prior studies have applied it to finance area like bond rating. Thus, this study applies it to a real world customer level classification case for implementing customer relationship management. The result shows that the ordinal multiclass SVM model may also be effective for customer level classification.

Hybrid Case-based Reasoning and Genetic Algorithms Approach for Customer Classification

  • Kim Kyoung-jae;Ahn Hyunchul
    • Journal of information and communication convergence engineering
    • /
    • 제3권4호
    • /
    • pp.209-212
    • /
    • 2005
  • This study proposes hybrid case-based reasoning and genetic algorithms model for customer classification. In this study, vertical and horizontal dimensions of the research data are reduced through integrated feature and instance selection process using genetic algorithms. We applied the proposed model to customer classification model which utilizes customers' demographic characteristics as inputs to predict their buying behavior for the specific product. Experimental results show that the proposed model may improve the classification accuracy and outperform various optimization models of typical CBR system.

온라인 무료 샘플 판촉의 효과적 활용을 위한 기계학습 기반 고객분류예측 모형 (A Machine Learning-based Customer Classification Model for Effective Online Free Sample Promotions)

  • 원하람;김무전;안현철
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제27권3호
    • /
    • pp.63-80
    • /
    • 2018
  • Purpose The purpose of this study is to build a machine learning-based customer classification model to promote customer expansion effect of the free sample promotion. Specifically, the proposed model classifies potential target customers who are expected to purchase the products included in the free sample promotion after receiving the free samples. Design/methodology/approach This study proposes to build a customer classification model for determining customers suitable for providing free samples by using various machine learning techniques such as logistic regression, multiple discriminant analysis, case-based reasoning, decision tree, artificial neural network, and support vector machine. To validate the usefulness of the proposed model, we apply it to a real-world free sample-based target marketing case of a Korean major cosmetic retail company. Findings Experimental results show that a machine learning-based customer classification model presents satisfactory accuracy ranging from 70% to 75%. In particular, support vector machine is found to be the most effective machine learning technique for free sample-based target marketing model. Our study sheds a light on customer relationship management strategies using free sample promotions.

특성중요도를 활용한 분류나무의 입력특성 선택효과 : 신용카드 고객이탈 사례 (Feature Selection Effect of Classification Tree Using Feature Importance : Case of Credit Card Customer Churn Prediction)

  • 윤한성
    • 디지털산업정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.1-10
    • /
    • 2024
  • For the purpose of predicting credit card customer churn accurately through data analysis, a model can be constructed with various machine learning algorithms, including decision tree. And feature importance has been utilized in selecting better input features that can improve performance of data analysis models for several application areas. In this paper, a method of utilizing feature importance calculated from the MDI method and its effects are investigated in the credit card customer churn prediction problem with classification trees. Compared with several random feature selections from case data, a set of input features selected from higher value of feature importance shows higher predictive power. It can be an efficient method for classifying and choosing input features necessary for improving prediction performance. The method organized in this paper can be an alternative to the selection of input features using feature importance in composing and using classification trees, including credit card customer churn prediction.

An Application of Support Vector Machines to Customer Loyalty Classification of Korean Retailing Company Using R Language

  • 응위엔푸티엔;이영찬
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제26권4호
    • /
    • pp.17-37
    • /
    • 2017
  • Purpose Customer Loyalty is the most important factor of customer relationship management (CRM). Especially in retailing industry, where customers have many options of where to spend their money. Classifying loyal customers through customers' data can help retailing companies build more efficient marketing strategies and gain competitive advantages. This study aims to construct classification models of distinguishing the loyal customers within a Korean retailing company using data mining techniques with R language. Design/methodology/approach In order to classify retailing customers, we used combination of support vector machines (SVMs) and other classification algorithms of machine learning (ML) with the support of recursive feature elimination (RFE). In particular, we first clean the dataset to remove outlier and impute the missing value. Then we used a RFE framework for electing most significant predictors. Finally, we construct models with classification algorithms, tune the best parameters and compare the performances among them. Findings The results reveal that ML classification techniques can work well with CRM data in Korean retailing industry. Moreover, customer loyalty is impacted by not only unique factor such as net promoter score but also other purchase habits such as expensive goods preferring or multi-branch visiting and so on. We also prove that with retailing customer's dataset the model constructed by SVMs algorithm has given better performance than others. We expect that the models in this study can be used by other retailing companies to classify their customers, then they can focus on giving services to these potential vip group. We also hope that the results of this ML algorithm using R language could be useful to other researchers for selecting appropriate ML algorithms.

분류나무를 활용한 군집분석의 입력특성 선택: 신용카드 고객세분화 사례 (Classification Tree-Based Feature-Selective Clustering Analysis: Case of Credit Card Customer Segmentation)

  • 윤한성
    • 디지털산업정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.1-11
    • /
    • 2023
  • Clustering analysis is used in various fields including customer segmentation and clustering methods such as k-means are actively applied in the credit card customer segmentation. In this paper, we summarized the input features selection method of k-means clustering for the case of the credit card customer segmentation problem, and evaluated its feasibility through the analysis results. By using the label values of k-means clustering results as target features of a decision tree classification, we composed a method for prioritizing input features using the information gain of the branch. It is not easy to determine effectiveness with the clustering effectiveness index, but in the case of the CH index, cluster effectiveness is improved evidently in the method presented in this paper compared to the case of randomly determining priorities. The suggested method can be used for effectiveness of actively used clustering analysis including k-means method.

Kano 모형에 기반한 소비자 요구사항 분류: 퍼지 접근방법 (Fuzzy KANO Model: Fuzzy Set-Based Classification of Customer Requirements)

  • 임정훈;민대기;김광재
    • 품질경영학회지
    • /
    • 제31권3호
    • /
    • pp.98-113
    • /
    • 2003
  • Kano model distinguishes three types of customer requirements, namely, one-dimensional quality, must-be quality, and attractive quality. There are a few methods for classifying a given customer requirement into one of the Kano's quality elements. However, the existing methods have a common limitation in that they are based on Kano evaluation table. Kano evaluation table is not always effective for the classification task, and suffers from a significant information loss. This paper proposes an alternative to Kano's evaluation table and a new classification scheme based on fuzzy set concept. The proposed method is illustrated using a case study on the ADSL service.

Development of Representative Curves for Classified Demand Patterns of the Electricity Customer

  • Yu, In-Hyeob;Lee, Jin-Ki;Ko, Jong-Min;Kim, Sun-Ic
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1379-1383
    • /
    • 2005
  • Introducing the market into the electricity industry lets the multiple participants get into new competition. These multiple participants of the market need new business strategies for providing value added services to customer. Therefore they need the accurate customer information about the electricity demand. Demand characteristic is the most important one for analyzing customer information. In this study load profile data, which can be collected through the Automatic Meter Reading System, are analyzed for getting demand patterns of customer. The load profile data include electricity demand in 15 minutes interval. An algorithm for clustering similar demand patterns is developed using the load profile data. As results of classification, customers are separated into several groups. And the representative curves for the groups are generated. The number of groups is automatically generated. And it depends on the threshold value for distance to separate groups. The demand characteristics of the groups are discussed. Also, the compositions of demand contracts and standard industrial classification in each group are presented. It is expected that the classified curves will be used for tariff design, load forecasting, load management and so on. Also it will be a good infrastructure for making a value added service related to electricity.

  • PDF

통신 산업의 고객 분류를 위한 예측 모델 설계 (Design of a Forecasting Model for Customer Classification in the Telecommunication Industries)

  • 이병업;조규하;송석일;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제6권1호
    • /
    • pp.179-189
    • /
    • 2006
  • 최근 데이터 수집 및 저장기술의 발달, 데이터베이스 관리시스템과 데이터웨어하우스 기술의 광범위한 사용은 기업내부의 대량의 데이터를 축적할 수 있도록 하고 있으며, 축적된 데이터는 의사결정에 필요한 새롭고 가치 있는 정보와 지식을 획득할 수 있는 잠재적인 원천으로 인정되고 있다. 본 논문에서는 이동통신업체의 데이터를 가지고 데이터 마이닝 방법론을 이용하여 기존고객을 세분화하기 위한 예측모델을 설계한다. 이를 통해 고객 개개인의 특성에 맞는 마케팅 프로모션을 하게 하고 신규고객을 획득할 때는 신규 고객의 특성을 미리 예측하여 세분화함으로써 고객의 평생가치를 촉진하여 기업과 고객과의 관계성을 높여서 기업은 안정된 고객층으로부터 수익을 창출하고 고객들은 해당 기업으로부터 더 많은 혜택을 받게 하는데 목적이 있다.

  • PDF