• Title/Summary/Keyword: curved-surfaces

Search Result 187, Processing Time 0.024 seconds

Laser Preheating Method for Three-Dimensional Laser Assisted Milling (3차원 레이저 보조 밀링을 위한 레이저 예열 방법에 관한 연구)

  • Oh, Won-Jung;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1031-1037
    • /
    • 2015
  • Laser assisted machining (LAM) is an effective method with which to effectively process difficult-to-cut materials. Simple machining processes, such as turning and linear tool paths, have been studied by many researchers. But, there are few research efforts on LAM workpieces using threedimensional shapes because of difficulties controlling the laser heat on workpieces with inclined angles or curved surfaces. Two methods for machining three-dimensional workpieces are proposed in this paper. The first is that the heat source shape and laser focal length are maintained using an index table. Second, a rotary type laser module is controlled using an algorithm to move the laser heat source in all directions. This algorithm was developed to control the rotary type laser module and the machine tool simultaneously. These methods are verified by a CATIA simulation.

Polishing Robot Attached to a Machining Center for a Freely-Curved Surface Die

  • Lee, Min-Cheol;Go, Seok-Jo;Cho, Young-Gil;Lee, Man-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.43-53
    • /
    • 2002
  • Polishing a die that has free-form surfaces is a time-consuming and tedious job, and requires a considerable amount of high-precision skill. In order to reduce the polishing time and cope with the shortage of skilled workers, a user-friendly automatic polishing system was developed. The polishing system is composed of two subsystems, a three-axis machining center and a two-axis polishing robot. The system has five degrees of freedom and is able to keep the polishing tool in a position normal to the die surface during operation. A sliding mode control algorithm with velocity compensation was proposed to reduce tracking errors. Trajectory tracking experiments showed that the tracking error can be reduced prominently by the proposed sliding mode control compared to a PD (proportional derivative) control. To evaluate the polishing performance of the polishing system and to and the optimal polishing conditions, the polishing experiments were conducted.

A Suggestion of Method to reduce the Radiation Efficiency of Dash Panel of a Passenger Car (승용차 대시부의 구조 방사 효율 저감 방법 제안)

  • Kim, Young-Ki;Kang, Yeon-June;Ahn, Ok-Kyun;Ki, Ji-Hyeon;Choi, Yoon-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.268-272
    • /
    • 2002
  • A study to determine the structure-borne noise radiated by a dash panel of a real car is performed by using the finite element method (FEM) and the boundary element method (BEM). The radiation efficiency is used to estimate the structure-borne noise radiated by a dash panel. The curved surfaces of a dash panel change the radiation efficiency. Experimental results of radiation efficiency of a simple rectangular plate and a dash panel show good agreements with the simulation results.

  • PDF

Development of Multi-Porous Diamond Wheel for Smooth and Mirror Finishing of Die Materials (금형재료의 정밀연삭을 위한 다기공 다이아몬드 숫돌의 개발)

  • 허성중
    • Journal of the Korean Professional Engineers Association
    • /
    • v.30 no.6
    • /
    • pp.144-152
    • /
    • 1997
  • Development of diamond wheel with fine grains and multi-pore structures were newely attempted to be studied in this paper. Wheels, that are employed for the smooth and mirrow finishing of die materials such as tungsten carbide alloy using tool and die materials, must have both performances to remove tool marks efficiently and to contact elastically with curved surfaces. Diamond abrasive grains were bonded firmly by a melamine to prevent the decrease of machining efficiency due to grain sinking within the bond materials. Also, highly foamed structures were developed to increase the flexibility of the wheel, and to induce active self-sharpening by increasing contact pressure between the wheel and work sufaces. In this paper, melamine-bonded diamond wheels are trial manufactured, then the forming method of wheels are explained.

  • PDF

Analysis of electron emission mechanism in surface conduction electron emission displays (표면전도 전자방출 표시장치의 전자방출 구조해석)

  • 김영삼;김영권;오현주;조대근;길도현;김대일;강준길;강승언;최은하
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.410-416
    • /
    • 1999
  • It is confirmed that the cause of anode current in SEDs (surface conduction electron emission displays) is the inertial force of electron emitted from the cathode surface in the calculation of electron trajectory. In the fissure of sub-micron, most of electrons emitted from the area of the cathode edge flow into the coplanar anode, while some electrons are emitted into the display surface by the current ratio of $10^{-3}$. The later electrons are forced to fly into the display surface by the centrifugal force due to the curved electric field between top side surfaces near the fissure.

  • PDF

Analytic and Discrete Fairing of 3D NURBS Curves (3D NURBS 곡선의 해석적 및 이산적 순정)

  • 홍충성;홍석용;이현찬
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.127-138
    • /
    • 1999
  • For reverse engineering, curves and surfaces are modeled for new products by interpolating the digitized data points. But there are many measuring or deviation errors. Therefore, it is important to handle errors during the curve or surface modeling. If the errors are ignored, designer could get undesirable results. For this reason, fairing procedure with the aesthetics criteria is necessary in computer modeling. This paper presents methods of 3D NURBS curve fairing. The techniques are based on automatic repositioning of the digitized dat points or the NURBS curve control points by a constrained nonlinear optimization algorithm. The objective function is derived variously by derived curved. Constraints are distance measures between the original and the modified digitized data points. Changes I curve shape are analyzed by illustrations of curve shapes, and continuous plotting of curvature and torsion.

  • PDF

Stresses analyses of shell structure with large holes

  • Tian, Zongshu;Liu, Jinsong
    • Structural Engineering and Mechanics
    • /
    • v.6 no.8
    • /
    • pp.883-899
    • /
    • 1998
  • The strength, deformation and buckling of a large engineering structure consisting of four ellipsoidal shells, two cylindrical shells with stiffening ribs and large holes, one conical shell and three pairs of large flanges under external pressure, self weight and heat sinks have been analysed by using two kinds of five different finite elements - four assumed displacement finite elements (shell element with curved surfaces, axisymmetric conical shell element with variable thickness, three dimensional eccentric beam element, axisymmetric solid revolutionary element) and an assumed stress hybrid element (a 3-dimensional special element developed by authors). The compatibility between different elements is enforced. The strength analyses of the top cover and the main vessel are described in the paper.

Using Piecewise Circular Curves as a 2D Collision Primitive

  • Ollington, Robert
    • Asia-Pacific Journal of Business
    • /
    • v.9 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • Physics simulation is an important part of many interactive 2D applications and collision detection and response is key component of this simulation. While methods for reducing the number of collision tests that need to be performed has been well researched, methods for performing the final checks with collision primitives have seen little recent development. This paper presents a new collision primitive, the n-arc, constructed from piecewise circular curves or biarcs. An algorithm for performing a collision check between these primitives is presented and compared to a convex polygon primitive. The n-arc is shown to exhibit similar, though slightly slower, performance to a polygon when no collision occurs, but is considerably faster when a collision does occur. The goodness of fit of the new primitive is also compared to a polygon. While the n-arc often gives a looser fit in terms of area, the continuous tangents of the n-arcs makes them a good choice for organic, soft or curved surfaces.

  • PDF

Magnetic Abrasive Polishing and Its Application (초정밀 자기연마 가공 기술과 최근 연구)

  • Kwak, Tae-Soo;Kwak, Jae-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.266-272
    • /
    • 2012
  • This paper has aims to share fundamental knowledge for magnetic abrasive polishing and to mainly introduce recent research results. In order to enhance a magnetic flux density for nonferrous materials, advanced magnetic abrasive polishing system which is called 2nd generation system was established by electro-magnet array table, and the effectiveness of the electromagnet array table was evaluated in real polishing experiments. To increase adhesiveness of the abrasives in high speed polishing, a silicone gel agent was proposed and carbon nanotube particles as new magnetic abrasives were applied in the magnetic abrasive polishing. In addition, a strategy for optimal step-over determination by heuristic algorithm was introduced for applying large size workpiece. Curved surfaces having a uniform radius were simulated and tested with installed electro-magnet array table.

A Mechanism of Automated Manufacturing Processes for Classical String Musical Instruments (현악기 제조 자동화시스템 구축을 위한 Mechanism 설계)

  • Jeon, Tae-Bo;Yun, Kyong-Su
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.321-329
    • /
    • 1999
  • An automated manufacturing process mechanism for string musical instruments has been designed in this study. In contrast to other manufacturing products, classical string instruments try to preserve their traditional design shapes even in these days and involve variety of wood working(carpentry) characteristics including highly skilled curved surfaces treatments. Great efforts have been put to develop an integrated and automated system for improved product quality and process control, reduced physical labors, better safety etc. They, however, have been limited to devise jigs and tools with regard to selected processes due to lack of technology and research man-powers. We carefully examined the products and process characteristics, and an automated mechanism which overcome prevailing drawbacks has been derived.

  • PDF