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Abstract
Physics simulation is an important part of many interactive 2D applications and collision 
detection and response is key component of this simulation. While methods for reducing the 
number of collision tests that need to be performed has been well researched, methods for 
performing the final checks with collision primitives have seen little recent development. 
This paper presents a new collision primitive, the n-arc, constructed from piecewise circular 
curves or biarcs. An algorithm for performing a collision check between these primitives is 
presented and compared to a convex polygon primitive. The n-arc is shown to exhibit similar, 
though slightly slower, performance to a polygon when no collision occurs, but is 
considerably faster when a collision does occur. The goodness of fit of the new primitive is 
also compared to a polygon. While the n-arc often gives a looser fit in terms of area, the 
continuous tangents of the n-arcs makes them a good choice for organic, soft or curved 
surfaces. 
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Ⅰ. IntroductionPhysics	 simulation	 plays	 a	 very	 im-portant	 role	 in	 modern	 computer	 games	and	 many	 other	 interactive	 computer	applications.	 A	 good	 physics	 simulation	can	 make	 a	 game	 more	 enjoyable,	 more	believable,	 and	 improve	 replayability.	 A	

key	 part	 of	 any	 physics	 simulation	 is	 col-lision	 detection	— determining	when	 two	objects	 are	 intersecting.	 Depending	 on	the	 geometry,	 this	 can	 be	 a	 very	 compu-tationally	 expensive	 process.	The	 typical	 approach	 to	 speeding	 up	collision	 checks	 is	 to	 use	 a	 rough	 broad	phase	 approach	 that	 can	 quickly	 cull	 po-
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tential	 collisions,	 followed	 by	 a	 narrow	phase	 that	 performs	 a	more	 precise	 colli-sion	 check.	 Broad	 phase	 collision	 check-ing	 algorithms	 are	 an	 ongoing	 topic	 of	 re-search	 and	 typically	 involve	 the	 use	 of	some	 form	 of	 space	 partitioning	 and/or	hierarchical	 bounding	 volumes	 [Jimene	 ́z	et	 al.	 2001;	 Lin	 and	 Gottschalk	 1998].The	 narrow	 phase	 consists	 of	 detailed	checks	 between	 collision	 primitives.	 Often	these	 primitives	 are	 approximations	 of	the	 desired	 geometry	 and	 a	 trade-off	must	 be	 made	 between	 the	 goodness	 of	fit	 and	 the	 speed	 of	 the	 collision	 check.	The	 development	 of	 primitives	 that	 pro-vide	 a	 good	 fit	 and	 low	 computational	cost	 is	 an	 important	 consideration.	 While	some	 important	 research	 has	 been	 con-ducted	 for	 3D	 primitives	 [Krishnan	 et	 al.	 	
Fig. 1. Examples of 4-, 6-, and 8-Arcs

1998;	 Larsen	 et	 al.	 2000;	 Krishnan	 et	 al.	1998],	 there	 has	 been	 little	 work	 on	 2D	primitives	 in	 recent	 times.The	 2D	 primitives	 most	 often	 used	 are	circles,	 axis-aligned	 bounding	 boxes	 (AA	BBs),	 oriented	 bounding	 boxes	 (OBBs)	and	 convex	 polygons	 as	 shown	 in	 Figure	2.	 Circle	 and	 AABB	 collisions	 are	 very	fast	 to	 compute,	 but	 are	 a	 poor	 fit	 for	many	 objects.	 OBBs	 provide	 a	 better	 fit	for	most	 objects,	 but	 are	 slower	 to	 compute.	Polygons	 are	 a	 good	 fit	 for	 many	 objects,	but	 are	 quite	 slow	 to	 compute.While	 circles	 and	 AABBs	 generally	 pro-vide	 a	 poor	 fit	 to	 the	 underlying	 geome-try,	 it	 is	 often	 more	 practical	 to	 change	the	 shape	 of	 the	 target	 geometry	 than	use	 a	 slower	 collision	 primitive.	 Many	physics	 based	 games	 (e.g.	 Angry	 Birds1)	take	 this	 approach.	When	 a	 better	 fit	 is	 required,	 polygons	are	 typically	 used	 and	 these	 can	 produce	a	 very	 good	 fit	 for	 many	 shapes,	 espe-cially	 man-	 made	 objects	 (e.g.	 buildings).	However,	 many	 organic	 objects	 and	 ob-jects	 with	 curved	 surfaces	 require	 a	many-sided	 polygon	 to	 produce	 a	 good	 fit	resulting	 in	 potentially	 poor	 performance.	It	 would	 be	 useful	 then	 to	 have	 a	 primi-tive	 that	 provides	 similar	 (or	 better)	 per-formance	 to	 a	 polygon,	 but	 is	 better	 suit-ed	 to	 organic/curved	 objects.	This	 paper	 presents	 a	 collision	 primitive	and	 collision	 detection	 algorithm	 based	on	 piecewise	 circular	 curves[Banchoff	and	 Giblin	 1994]	 or	 biarcs[Bolton	 1975]	and	 analyses	 the	 computational	 complex-ity	 of	 the	 algorithm	 and	 the	 goodness	 of	fit	 of	 the	 primitive	 for	 typical	 shapes.	
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Fig. 2. Ing Box (AABB), c) Oriented Bounding Box (OBB), d) Convex Polygon

Ⅱ. N-arc Collision Primitive 

Piecewise	 circular	 curves	 or	 biarcs	 be-came	 popular	 in	 the	 70’s	 when	 the	 ship	building	 industry	 required	 a	 replacement	for	 cubic	 splines	 [Bolton	 1975].	 These	curves	 consist	 of	 a	 series	 of	 arcs	 arra-	nged	 to	 produce	 a	 continuous	 tangent	where	 they	 join.	 One	 of	 the	 primary	 rea-sons	 for	 using	 biarcs	 was	 that	 it	 was	much	 easier	 to	 test	 for	 intersection	 be-tween	 biarcs	 and	 other	 primitives	 (e.g.	

lines	 and	 circles).	 The	 requirement	 for	fast	 and	 accurate	 collision	 checks	 is	 also	an	 issue	 for	 interactive	 2D	 applications.	For	most	 applications	 the	 collision	 geo-	metry	 is	 used	 to	 approximate	 a	 physical	object,	 so	 a	 closed	 shape	 is	 usually	required.	 To	 simplify	 collision	 checks	 it	 is	also	 a	 common	 requirement	 that	 the	shape	 be	 convex.	 In	 this	 paper	 a	 closed	convex	 shape	 composed	 of	 biarcs	 is	 re-ferred	 to	 as	 an	 n-arc	 (compare	 with	n-gon	 for	 polygons).	 For	 example,	 a	 4-arc	can	 be	 constructed	 by	 starting	 with	 two	



Asia-Pacific Journal of Business   Vol. 9, No. 2, June 20184

Fig. 3. Construction of a 4-Arc from Two Large Overlapping Circles and Two Smaller Inscribed 
Circles

large	 overlapping	 circles	 and	 then	 placing	two	 smaller	 inscribed	 circles	 where	 they	join,	 as	 shown	 in	 figure	 3.	It	 is	 generally	 easier	 and	 more	 natural	to	 construct	 an	 n-arc	 from	 a	 set	 of	 con-trol	 points,	 such	 as	 the	 points	 where	 arcs	intersect.	 Un-	 fortunately	 not	 every	 set	 of	points	 can	 be	 used	 to	 construct	 a	 valid	n-arc.	 For	 a	 set	 of	 points	 to	 be	 valid	 they	must	 satisfy	 the	 following	 properties:	
—There	 must	 be	 an	 even	 number	 of	points	 (actually	 an	 odd	 number	 of	points	 is	 possible	 provided	 two	 con-secutive	 arcs	 have	 the	 same	 radius)	
—The	 points	 must	 describe	 a	 convex	polygon 
—The	 polygon	 must	 be	 such	 that	 the	sum	 of	 the	 even-numbered	 in-	 terior	angles	 equals	 the	 sum	 of	 the	odd-numbered	 interior	 angles	

Theses	 constraints	 are	 difficult	 to	 satisfy	manually,	 making	 it	 difficult	 to	 edit	 the	control	 points.	 A	method	 of	 converting	 an	arbitrary	 polygon	 into	 an	 n-arc	 is	 required.	Given	 an	 arbitrary	 polygon,	 an	 n-arc	 could	be	 calculated	 using	 the	 method	 proposed	by	 Maier	 and	 Pisinger	 [2013].	 However,	this	 method	 does	 not	 allow	 the	 number	of	 arcs	 to	 be	 predeter-	 mined.	 We	 use	 a	simpler	 method	 that	 makes	 use	 of	 the	constraints	 above	 as	 shown	 in	 algorithm	1.	 When	 adjusting	 inner	 angles	 in	 the	 al-gorithm	 care	 must	 be	 taken	 to	 ensure	that	 the	 overall	 sum	 of	 inner	 angles	 does	not	 change.	 For	 example,	 decreasing	 one	inner	 angle	 to	 make	 the	 polygon	 convex	should	 be	 accompanied	 by	 an	 increase	 in	one	 or	 more	 of	 the	 other	 angles	 to	compensate.	 The	 precise	method	 used	 for	these	 adjustments	 is	 not	 important.	
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Once	 the	 vertices	 of	 the	 end-points	 of	the	 arcs	 are	 known,	 the	 centres,	 and	 radii	of	 the	 arcs	 need	 to	 be	 calculated.	 At	 least	one	 radius	 must	 be	 known,	 from	 this	 the	centre	 of	 the	 corresponding	 arc	 can	 be	calculated.	 This	 radius	 also	 determines	the	 radii	 of	 adjacent	 arcs	 since	 the	 arcs	must	 be	 tangent	 continuous.	Owing	 to	 the	 careful	 construction,	when	 checking	 for	 a	 collision	 between	two	 n-arcs	 there	 will	 only	 ever	 be	 one	pair	 of	 arcs	 that	 need	 to	 be	 tested,	 and	this	 test	 can	 be	 performed	 as	 for	 circle	collisions.	 The	 main	 task	 is	 to	 determine	which	 pair	 of	 arcs	 should	 be	 tested.	

The	 first	 criterion	 to	 be	met	 is	 that	 the	centre	 of	 each	 arc	 should	 lie	 within	 the	extended	 sector	 defined	 by	 the	 other	 arc.	In	 our	 implementation	 this	 is	 achieved	 by	storing	 direction	 vectors	 for	 the	 radii	 of	each	 arc	 and	 checking	 to	 make	 sure	 the	opposing	 centre	 is	 on	 the	 correct	 sides	 of	the	 two	 radii	 defining	 an	 arc.	We	 use	 the	2D	 “cross	 product”	 for	 this	 purpose	 as	shown	 in	 equation	 1.	 This	 will	 return	 a	positive	 value	 if	 B	 is	 to	 the	 left	 of	 A.	A×B=AxBy−AyBx (1)The	 arc	 centres	 may	 (and	 frequently	will)	 lie	 outside	 of	 the	 object,	 therefore	using	 this	 test	 alone	 will	 result	 in	 false	positives	 and	 negatives.	 To	 avoid	 this	problem	 we	 also	 check	 that	 an	 arc	 is	“facing”	 towards	 the	 centroid	 of	 the	 other	n-arc.	 This	 is	 achieved	 by	 adding	 a	 fur-ther	 constraint	 so	 that	 no	 arc	 has	 a	 cen-tre	 angle	 greater	 than	 180	 and	 checking	that	 the	 dot	 product	 of	 the	 vector	 be-tween	 arc	 centres	 and	 the	 vector	 between	object	 centroids	 is	 positive.	 Psuedo-	 code	for	 the	 collision	 algorithm	 is	 shown	 in	 al-gorithm	 2.	 Note	 that	 the	 exhaustive	search	 to	 find	 the	 correct	 pair	 of	 arcs	may	 be	 replaced	 with	 a	 directed	 search,	but	 this	 is	 unlikely	 to	 be	 more	 efficient	unless	 there	 are	 a	 large	 number	 of	 arcs.	This	 collision	 test	 is	 based	 on	 the	 sepa-rating	 axes	 theorem	 (SAT).	 Polygon	 colli-sion	 tests	 are	 also	 commonly	 im-plemented	 using	 SAT.	 The	 polygon	 SAT	method	 checks	 each	 vertex	 against	 each	edge	 of	 the	 opposing	 polygon	 as	 shown	in	 algorithm	 3.	
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Both	 SAT	 algorithms	 run	 in	 worst-case	O(mn)	 time	where	m	 and	 n	 are	 the	 num-ber	 of	 arcs	 or	 edges	 in	 each	 object.	 The	polygon	 algorithm	 has	 an	 opportunity	 to	exit	 early	 if	 a	 separating	 axis	 is	 found,	but	 if	 no	 separating	 axis	 is	 found,	 the	 al-gorithm	 must	 run	 to	 completion.	 The	n-arc	 algorithm	 may	 exit	 as	 soon	 as	 the	correct	 pair	 of	 arcs	 is	 located	 regardless	of	 whether	 there	 is	 a	 collision	 or	 not.	This	 should	 give	 the	 n-arc	 algorithm	 an	advantage	 in	 situations	 where	 collisions	are	 frequent	 (e.g.	 stacked	 objects).	 How-	ever,	 the	 n-	 arc	 algorithm	 must	 perform	a	 square	 root	 operation	 if	 a	 collision	 is	found	 and	 the	 penetration	 of	 the	 two	 ob-jects	 needs	 to	 be	 calculated.	An	 alternative	 method	 for	 polygon	 col-lision	 test	 is	 the	 Gilbert-	 Johnson-Keerthi	(GJK)	 algorithm,	 shown	 in	 algorithm	 4.	This	 method	 is	 based	 on	 calculating	 the	Minkowski	 difference	 of	 two	 convex	shapes.	 The	 method	 searched	 for	 a	 sim-plex	within	 the	Minkowski	 difference	 that	

contains	 the	 origin,	 indicating	 that	 a	 colli-sion	 has	 occurred.	To	 perform	 the	 search	 the	 algorithm	makes	 use	 of	 a	 support	 function	 that	 re-turns	 a	 point	 on	 a	 shape	 that	 is	 furthest	in	 the	 supplied	 search	 direction.	 For	 poly-gons,	 this	means	 calculating	 the	 dot	 prod-uct	 of	 each	 vertex	 with	 the	 search	 direc-tion	 vector.	 For	 n-arcs	 it	 is	 also	 very	 easy	to	 implement	 a	 support	 function.	 The	support	 function	 for	 n-arcs	 simply	 searches	for	 the	 arc	 corresponding	 to	 the	 search	direction	 and	 then	 calculates	 the	 point	 on	the	 arc	 in	 that	 direction.	 The	 theoretical	worst	 case	 running	 time	 of	 the	 GJK	 algo-irthm	 is	 O(n2)	 however	 in	 practice	 it	 is	rare	 that	 more	 than	 a	 few	 iterations	 are	needed	 giving	 near	 linear	 time	 (this	 can	be	 improved	 further	 to	 near	 constant	 time	if	 the	 simplex	 used	 from	 the	 previous	frame	 is	 used	 to	 seed	 the	 algorithm).	The	 GJK	 algorithm	 only	 determines	 if	 a	collision	 has	 occurred	 or	 not,	 it	 does	 not	provide	 any	 information	 about	 the	 point	of	 collision	 or	 the	 amount	 of	 penetration.	This	 data	 is	 needed	 in	 order	 to	 calculate	the	 collision	 response.	 Therefore,	 when	 a	collision	 response	 is	 required,	 the	 GJK	 al-gorithm	 is	 enhanced	 by	 using	 the	 expand-ing	 polytopes	 algorithm	 (EPA)	 to	 calcu-late	 the	 collision	 point.	EPA	 works	 by	 expanding	 the	 simplex	calculated	 using	 GJK.	 The	 goal	 is	 to	 find	the	 nearest	 point	 on	 the	 Minkowski	 dif-ference	 to	 the	 origin,	 hence	 this	 algo-rithm	 also	 makes	 use	 of	 the	 same	 sup-port	 function	 used	 in	 GJK.	For	 polygons	 EPA	 requires	 at	 most	O(n)	 iterations.	 Unfortunately,	 EPA	 does	not	 work	 well	 for	 n-arcs	 since	 it	 will	 not	terminate	 at	 an	 edge	 that	 cannot	 be	 ex-
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panded,	 since	 the	 Minkowski	 difference	of	 two	 n-arcs	 will	 have	 a	 curved	 peri-	meter.	 Instead	 a	 threshold	 must	 be	 chos-en	 and	 the	 algorithm	 terminated	 if	 fur-ther	 expansion	 in	 the	 search	 direction	 is	less	 than	 threshold.	 The	 performance	 of	EPA	 with	 n-arcs	 is	 highly	 dependant	 on	the	 size	 of	 the	 termination	 threshold.	When	 using	 either	 SAT	 of	 GJK,	 efficient	implementation	 of	 the	 n-arc	 algorithm	 re-quires	 the	 centres,	 directions,	 and	 radii	 of	each	 arc	 to	 be	 stored	 as	 well	 as	 the	 ob-ject	 centroids.	 This	 is	 slightly	 more	 than	for	 polygons,	 which	 require	 storage	 of	the	 vertices	 and	 perpendiculars	 only.	 The	polygon	 perpendiculars	 can	 be	 easily	 cal-culated	 but	 they	 must	 be	 normalised,	which	 is	 a	 significant	 additional	 cost.	

Ⅲ. Evaluation 

3.1 Computational Efficiency To	 test	 the	 performance	 of	 the	 n-arc	collisions,	 both	 the	 SAT	 and	 GJK	 algo-rithms	 for	 n-arcs	 and	 polygons	 were	 im-plemented	 in	 the	 Python	 programming	language.	 The	 algorithms	 were	 tested	 in	two	 scenarios,	 one	where	 collisions	 never	occurred	 and	 one	where	 collisions	 always	occurred.	 The	 time	 for	 1000	 collision	checks	 was	 measured	 using	 the	 cProfile	library	 and	 averaged	 over	 five	 trials	 and	the	 results	 are	 shown	 in	 figure	 5.	For	 polygons,	 both	 algorithms	 are	 fast-er	 when	 no	 collision	 occurs	 as	 expected.	In	 both	 the	 no-collision	 and	 the	 collision	case,	 the	 SAT	 algorithm	 is	 slightly	 faster	when	 there	 are	 fewer	 polygon	 edges,	 but	does	 not	 scale	 as	 well	 as	 the	 GJK	 algo-	rithm.	 Scaling	 appears	 to	 be	 approx-imately	 linear	 in	 both	 cases	 for	 GJK,	 but	quadratic	 for	 SAT.	For	 n-arcs,	 the	 no-collision	 case	 be-haves	 similarly	 to	 polygons,	 but	 is	 slightly	slower	 for	 both	 the	 SAT	 and	 GJK	 algori-	thms.	 How-	 ever,	 when	 collisions	 do	 oc-cur,	 the	 n-arc	 SAT	 algorithm	 is	 signifi-	cantly	 faster	 than	 either	 of	 the	 polygon	algorithms	 for	 the	 number	 of	 arcs	 tested	and	 in	 fact	 performance	 is	 similar	 to	 the	no-collision	 case	 for	 n-arcs.	The	 polygon	 SAT	 algorithm	 is	 slower	when	 a	 collision	 occurs	 because	 every	vertex	 has	 to	 be	 tested	 against	 every	edge	 -	 there	 is	 no	 early	 exit	 option	 for	the	 algorithm	 when	 a	 collision	 occurs.	For	 n-arcs	 early	 exit	 from	 the	 algorithm	is	 still	 possible.	 In	 fact,	 with	 10	 and	 12	
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Fig. 4. Performance of N-Arcs and N-Gons When no Collision Occurs

arcs	 we	 see	 that	 the	 n-arc	 SAT	 algorithm	is	 slightly	 faster	 when	 there	 is	 a	 collision	compared	 to	 when	 there	 is	 no	 collision.	When	 two	 n-arcs	 overlap	 significantly,	there	 may	 be	 two	 or	 more	 pairs	 of	 arcs	that	 are	 an	 (almost)	 equally	 good	 choice	for	 the	 inter-	 section	 test.	 The	 n-arc	 algo-rithm	 will	 choose	 the	 first	 valid	 pair	 of	arcs	 encountered	 giving	 multiple	 options	for	 an	 early	 exit.	 This	 will	 be	 more	 likely	to	 occur	 when	 there	 are	 small	 (corner)	arcs	 present	 and	 when	 there	 is	 a	 large	interpenetration	 between	 objects.	The	 polygon	 GJK	 algorithm	 is	 slower	when	 a	 collision	 occurs	 because	 of	 the	EPA	 calculations	 required	 to	 determine	the	 collision	 point	 and	 penetration.	 This	is	 significantly	 slower	 than	 the	 simple	calculations	 required	 for	 the	 n-arc	 SAT	

algorithm,	 although	 it	 is	 likely	 that	 for	larger	 numbers	 of	 arcs/edges	 the	 polygon	GJK	 algorithm	 becomes	 faster	 due	 to	 im-proved	 scaling.	In	 contrast,	 the	 n-arc	 GJK	 algorithm	 ex-hibits	 very	 poor	 performance	 in	 the	 colli-sion	 case	 particularly	 for	 the	 4-arc	shapes.	 This	 is	 due	 to	 the	 EPA	 part	 of	 the	algorithm	 as	 explained	 above.	 The	 EPA	algorithm	 stops	 when	 it	 cannot	 expand	the	 nearest	 simplex	 edge	 to	 the	 origin.	Since	 the	 simplex	 edge	 is	 a	 straight	 line	and	 the	Minkowski	 difference	 of	 n-arcs	 is	a	 curve,	 the	 edge	 can	 be	 expanded	 indef-initely	 and	 a	 stopping	 threshold	 must	 be	used.	 When	 there	 are	 more	 arcs	 GJK	stops	with	 the	 simplex	 edge	 closer	 to	 the	origin	 on	 average,	 hence	 fewer	 EPA	 iter-ations	 are	 required	 giving	 the	 unusual	
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Fig. 5. Performance of N-Arcs and N-Gons When a Collision Occurs

Fig. 6. Bounding Colliders and Bounded Areas for the Ghost Image. Top Row: 4-Arc, 6-Arc, 
8-Arc; Bottom Row: 4-Gon, 6-Gon, 8-Gon



Asia-Pacific Journal of Business   Vol. 9, No. 2, June 201810

Fig. 7. Bounding Colliders and Bounded Areas for the House Image. Top Row: 4-Arc, 6-Arc, 
8-Arc; Bottom Row: 4-Gon, 6-Gon, 8-Gon

performance	 curve	 for	 the	 n-arc	 GJK	algorithm.	
3.2 Goodness of Fit To	 test	 the	 ability	 of	 n-arcs	 to	 fit	 a	 giv-en	 shape,	 four	 images	 were	 chosen	 from	the	 Pixabay	 website2.	 n-Arcs	 and	 n-gons	were	 then	 manually	 matched	 to	 find	 a	minimal	 bound	 for	 the	 image.	The	 first	 image	 was	 the	 ghost	 image	shown	 in	 figure	 6.	 This	 image	 is	 bounded	by	 curves	 and	 should	 be	 a	 good	 match	for	 n-arcs.	 Subjectively	 the	 6-arc	 and	8-arc	 appear	 to	 provide	 a	 very	 good	 fit	for	 this	 shape.	 The	 6-arc	 produces	 a	slightly	 tighter	 fit	 (smaller	 area)	 than	 the	6-gon,	 but	 the	 8-gon	 gives	 a	 tighter	 fit	than	 the	 8-arc.	 How-	 ever,	 for	 this	 shape	

the	 6-	 and	 8-arcs	 may	 be	 a	 better	 choice	since	 a	 tangent-continuous	 curve	 should	produce	 a	more	 natural	 collision	 response.The	 second	 image	was	 the	 house	 image	shown	 in	 figure	 7.	 This	 image	 is	 a	 closed	polygon,	 the	 type	 of	 image	 that	 should	 be	a	 poor	 choice	 for	 n-arcs.	 The	 8-gon	 pro-vides	 a	 perfect	 (convex)	 fit	 for	 this	 image	and	 the	 areas	 of	 all	 the	 n-gon	 colliders	are	 considerably	 less	 than	 for	 the	 corre-sponding	 n-arcs	 as	 expected.	 Theoreti-	cally,	 a	 better	 fit	 could	 be	 achieved	 for	the	 n-arcs,	 but	 the	 construction	 of	 these	colliders	 was	 very	 difficult	 due	 to	 the	 ne-cessity	 for	 the	 arc	 control	 points	 to	 be	very	 close	 together	 and	 precisely	 posi-tioned	 at	 the	 corners.	 An	 automated	matching	 procedure	 would	 probably	 pro-vide	 a	 slightly	 better	 fit.	
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Fig. 8. Top Row: 4-Arc, 6-Arc, 8-Arc; Bottom Row: 4-Gon, 6-Gon, 8-Gon.  Bounding Colliders and 
Bounded Areas for the Spaceship Image

Fig. 9. Bounding Colliders and Bounded Areas for the Tree Image. 
Top Row: 4-Arc, 6-Arc, 8-Arc;  Bottom Row: 4-Gon, 6-Gon, 8-Gon
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The	 third	 image	 was	 a	 spaceship	 con-structed	 mostly	 from	 curves	 as	 shown	 in	figure	 8.	 Again,	 the	 n-arcs	 produce	 a	 sub-jectively	 good	 fit	 for	 this	 image,	 particularly	the	 6-arc	 and	 8-arc.	 However,	 the	 areas	 of	these	 colliders	 are	 slightly	 larger	 than	 for	the	 6-gon	 and	 8-gon	 respectively.	 Despite	this	 the	 n-arcs	 may	 produce	 a	 more	 desir-able	 collision	 response	 depending	 on	 the	application.	 For	 example,	 the	 nose	 of	 the	spaceship	 is	 very	 well	 matched	 and	 this	may	 be	 especially	 important	 for	 some	applications.	 For	 other	 applications,	 the	base	may	 be	more	 important	 and	 the	n-gons	give	 a	 better	 match	 here.	The	 final	 image	 was	 a	 tree	 as	 seen	 in	figure	 9.	 This	 is	 a	 difficult	 shape	 for	 both	n-arcs	 and	 n-gons	 to	 match.	 The	 n-gons	produce	 a	 better	 fit	 in	 terms	 of	 area	 than	the	 corresponding	 n-arcs,	 but	 again	 for	this	 organic	 shape,	 the	 n-arcs	 may	 pro-vide	 a	 more	 natural	 collision	 response.	
Ⅳ. Conclusion and Further Work 

A	 novel	 2D	 collision	 primitive,	 the	n-arc,	 was	 introduced	 along	 with	 two	 al-gorithm	 for	 performing	 collision	 checks	based	 on	 the	 SAT	 and	 GJK	 algorithms.	For	 a	 small	 number	 of	 arcs,	 the	 SAT	 algo-rithm	 outperformed	 the	 GJK	 algorithm,	especially	 in	 the	 advent	 of	 a	 collision.	The	 n-arc	 SAT	 algorithm	 exhibited	slightly	 poorer	 performance	 to	 the	 poly-gon	 SAT	 and	 GJK	 algorithms	when	 no	 col-lision	 occurred,	 but	was	 significantly	 faster	in	 the	 advent	 of	 a	 collision.	 Furthermore,	unlike	 the	 polygon	 algorithms,	 the	 n-arc	SAT	 algorithm	 had	 almost	 identical	 per-formance	 irrespective	 of	 whether	 a	 colli-

sion	 occurred	 or	 not.	 This	 is	 particularly	important	 when	 a	 stable	 frame-rate	 is	 re-quired	 or	 when	 there	 is	 an	 expectation	 of	frequent	 collisions.	The	 ability	 of	 the	 new	 primitive	 to	 fit	 a	range	 of	 underlying	 geometries	 was	 also	investigated.	While	 n-arcs	 often	 produce	 a	slightly	 worse	 fit	 than	 a	 polygon	 of	 the	same	 degree	 (in	 terms	 of	 the	 respective	areas	 for	 the	 primitives),	 the	 n-arc	 fit	may	be	 qualitatively	more	 satisfying	 for	 curved	and	 organic	 shapes.	 It	 is	 also	 likely,	though	 difficult	 to	 measure,	 that	 the	 colli-sion	 response	 produced	 by	 a	 tangent-con-tinuous	 curve	 will	 be	 more	 realistic	 and	believable	 than	 that	 for	 a	 polygon	 approx-imating	 a	 curved	 surface.	 Furthermore,	since	 artists	 often	work	within	 the	 bounds	of	 the	 collision	 primitives	 available,	 having	more	 primitives	 to	 choose	 from	 should	 al-low	 greater	 artistic	 freedom.	A	 method	 for	 constructing	 n-arcs	 from	a	 set	 of	 control	 points	 (algorithm	 1)	 was	also	 presented,	 this	 method	 was	 not	 par-ticularly	 intuitive.	 An	 adaptation	 of	 the	method	 proposed	 by	 Maier	 and	 Pisinger	[2013]	may	 be	 preferable.	 Alternatively,	 a	method	 for	 converting	 a	 Beziér	 curves	 in-to	 biarcs,	 similar	 to	 that	 proposed	 by	 Risˇkus	 [2006],	 could	 also	 be	 used	— lever-aging	 the	 existing	 familiarity	 many	 artist	have	 editing	 Beziér	 curves.	Thus	 far	 only	 closed,	 convex	 n-arcs	 have	been	 implemented.	 With	 minor	 mod-ifications	 to	 the	 algorithm,	 it	 should	 be	possible	 to	 test	 for	 collisions	 with	 open	and/or	 concave	 objects.	 This	 is	 likely	 to	result	 in	 reduced	 performance	 since	 mul-tiple	 collision	 points	 are	 possible,	 but	 the	advantages	 may	 outweigh	 the	 perform-ance	 cost.	 Further	 work	 is	 under	 way	 to	
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test	 the	 feasibility	 of	 implementing	 these	extensions	 to	 the	 algorithm.	
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