• 제목/요약/키워드: curved section

검색결과 302건 처리시간 0.024초

측방향흐름이 있는 만곡부 흐름의 해석

  • 박재현;윤성용;선우중호
    • 물과 미래
    • /
    • 제25권3호
    • /
    • pp.87-96
    • /
    • 1992
  • 측류취소로와 만곡부가 있는 원형수로를 1:20으로 축척한 모형수로에 대해 수리모형실험을 수행하여 만곡부에서의 유속, 수위와 유황과 같은 수리학적 특성을 살펴보고, 측류취소로가 만곡부에 미치는 영향을 살펴보고자 한다. 또한 모형수로에 대해 ADI방법으로 천수방정식을 수치해석하여 얻은 만곡부에서의 수리학적 특성을 실험에 의한 것과 비교하여 사용된 수치기법을 검증하였다. 대상이 된 전영역에 대하여 수리모형실험에서 얻어진 유속, 수위와 유황은 수치해석한 결과와 잘 일치한다. 그러나 직각좌표계를 사용함으로서 상대적으로 만곡부에서 단면축소 효과가 발생하므로 수치해석으로 얻어진 유속은 만곡부에서 실험치보다 약간 크게 나타나는데, 이것은 격자간격을 줄이면 개선되리라 판단된다. 수리모형실험과 수치해석 모두 만곡부 외측의 수위가 상승하고 내측의 유속이 빨라지는 만곡부의 특성을 잘 모사하고 있다. 만곡부 직전에 측류취수로가 있을 경우 측류취수로의 영향이 만곡수로내까지 미침을 알 수 있었다.

  • PDF

현장 계측을 통한 블록형 보강토옹벽 곡선부 보강 영역의 거동 특성 연구 (A Study on Behavior Characteristics of Reinforcement Zone of Block Type Mechanically Stabilized E arth Wall by Field Measurement in Curved Section)

  • 이소연;김영제;오동욱;이용주;정혁상
    • 한국지반신소재학회논문집
    • /
    • 제18권2호
    • /
    • pp.23-36
    • /
    • 2019
  • 본 논문에서는 블록식 보강토옹벽의 현장계측을 통해 곡선부 보강영역의 변형특성을 분석하였다. 보강토공법은 설계 및 시공이 증가하여 실생활에서 쉽게 접할 수 있게 되었으나, 곡선부의 균열 및 붕괴사례가 빈번히 발생하여 안전에 대한 중요성이 대두되고 있다. 이러한 붕괴원인은 곡선부에 대한 연구 부족과 설계기준의 미흡, 경제성과 공기단축에 의한 시공성 결여, 충분하지 못한 다짐 공간 등에 있다고 할 수 있다. 이에 본 연구에서는 기존 설계 및 시공 기준을 검토하고 블록형 보강토옹벽 곡선부 사고사례를 통해 원인을 분석하였으며, 실제 시공된 블록형 보강토옹벽의 현장계측을 통해 직선부와 곡선부의 거동을 비교 분석하고 곡선부 보강영역의 변형특성을 확인하였다. 그 결과, 먼저 곡선부의 수평변위가 직선부와 비교하여 볼록형에서 최대 90%, 오목형에서 최대 60% 높게 나타났으며, 다음으로 곡선부 보강영역에서 볼록형의 경우 보강토옹벽 중심에서 수평방향으로 H/2구간에서 최대변위를 보이며 H까지의 영향범위를 나타내었으며, 오목형의 경우 중심에서 최대변위를 보이며 수평방향으로 H/4구간에서 최소변위를 확인하였다. 이러한 결과로 형태에 따른 곡선부의 영향범위와 현장적용을 위한 보강영역의 재정립이 필요하다고 판단되며, 본 연구결과가 이를 위한 기초 자료로서 활용 가능할 것으로 판단된다.

곡선박스거더교의 뒤틀림효과에 대한 연구 (A Study of the Distortional Effect on Curved Box Girder Bridge)

  • 뉴웬반반;한택희;김성남;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.525-530
    • /
    • 2007
  • Although just developed in recent years, curved box girder has widely used in modern highway system due to their load resistance capacity as well as aesthetic considerations. According to recent literature reviews on curved box girder designs, distortional load was not considered as much as it deserves to be. In practice, the effect of distributional force is very small in straight bridge systems but yet unknown how it is in curved bridge systems. For the reason, this paper will show up an extensive parametric study on distortional behavior of curved box girder with trapezoidal section. Based on Dabrowski formulas, using finite element method, various bridges were investigated. In this study, following parameters will be included: span length, curvature radius, section height, section width, and internal section angle (web slope). From the obtained results, some initial geometric parameters are proposed for curved box girder bridges.

  • PDF

천연가스배관내 곡선 영역을 지나는 피그흐름의 동적모델링 (Dynamic Modeling of PIG Flow through Curved Section in Natural Gas Pipelines)

  • 쿠엔탄티엔;유휘룡;노용우;김상봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.247-252
    • /
    • 2001
  • In this paper, dynamic modeling and its analysis for the PIG flow through $90^{\circ}$ curved pipe with compressible and unsteady flow are studied. The PIG dynamics model is derived by using Lagrange equation under assumption that it passes through 3 different sections in the curved pipeline such that it moves into, inside and out of the curved section. The downstream and up stream flow dynamics including the curved sections are solved using MOC. The effectiveness of the derived mathematical models is estimated by simulation results for a low pressure natural gas pipeline including downward and upward curved sections. The simulation results show that the proposed model and solution can be used for estimating the PIG dynamics when we pig the pipeline including curved section.

  • PDF

원곡선구간에 종곡선 설치 가능한 곡선반경에 관한 연구 (A Study of Allowable Vertical Curve Radius on Horizontal Curved Section)

  • 이기승
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.309-314
    • /
    • 2003
  • A vertical curve should be installed in straight section. In case, it be installed on horizontal curved section, safety factor go down. In this study, it is calculated that the deficiency of cant about vertical curve radius on horizontal curved section. The result of this study will be used on planning the tack layout of railroad and design the track construction.

  • PDF

철도차량의 곡선 구간별 주행안전성 평가 (A Running Safety Assessment for Curved Section for a Railway Vehicle)

  • 이승일;이희성
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1301-1309
    • /
    • 2008
  • The curved portion fur each section running safety evaluation interpretation according to the track condition for improving the curved portion passage rate of a vehicle by using the multibody analysis model of the Saemaeul train was carried out. As a result, The excess of cant reaches the bad effect to the running safety in case the radius of curvature is small. In case the radius of curvature was large, we could confirm that the deficiency of cant reached the bad effect to the running safety. In the curved portion, the circular curve section most badly showed the running safety. The deficiency of curve length reaches the bad to the running safety. In the curved portion, the circular curve section most badly showed the running safety. Therefore the track condition(cant, transition curve length, etc) can reach the bad effect to the running safety of a vehicle, the exact design is required.

천연가스 배관 곡관부에서의 피그 동적 거동 해석 (Analysis of PIG Dynamics through Curved Section in Natural Gas Pipeline)

  • 김동규;;유휘룡;노용우;고영태;김상봉
    • 한국가스학회지
    • /
    • 제6권1호
    • /
    • pp.1-9
    • /
    • 2002
  • This paper presents simple models for flow and the PIG dynamics when it passes through a $90^{\circ}$ curved section of pipeline. The simulation has been done with two different operational boundary conditions. The solution fur non-linear hyperbolic partial equations for flow is given by using MOC. The Runge-Kuta method is used to solve the initial condition equation fur flow and the PIG dynamics equation. The simulation results show that the proposed model and solution can be used fur estimating the PIG dynamics when the pig runs in the pipeline including curved section. In this paper, dynamic modeling and its analysis for the PIG flow through $90^{\circ}$ curved pipe with compressible and unsteady flow are studied. The PIG dynamics model is derived by using Lagrange equation under assumption that it passes through 3 different sections in the curved pipeline such that it moves into, inside and out of the curved section. The downstream and up stream flow dynamics including the curved sections are solved using MOC. The effectiveness of the derived mathematical models is estimated by simulation results fur a low pressure natural gas pipeline including downward and upward curved sections. The simulation results show that the proposed model and solution can be used for estimating the PIG dynamics when we pig the pipeline including curved section.

  • PDF

단순변형률 조건 하의 회전하는 가변단면 $90^{\circ}$ 곡덕트내 외향 난류유동 측정 (Measurement of Outward Turbulent Flows Subject to Plane Rate of Strain in a Rotating 90 Deg. Curved Duct of Variable Cross-Section)

  • 오창민;최영돈
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.623-631
    • /
    • 2000
  • Hot-wire measurements were carried out on the developing turbulent flows subject to plane rate of strain in a rotating curved duct. The cross-section of the curved duct varies from 100mm${\times}$50mm rectangular shape at the bend inlet gradually to the 50mm${\times}$100mm rectangular shape at the bend outlet. Experimental setup consists of the test section of $90^{\circ}$ curved duct, rotating disc of 1.95m diameter, Ag-Ni precision slip ring, automatic traversing mechanism, variable speed motor, centrifugal blower, orifice flowmeter and hot-wire anemometer. Data signals from the rotating curved duct are transmitted through the slip ring to the computer which is located at the outside of the rotating disc. 3-dimensional velocity and 6 Reynold stresses components were obtained from the fluctuating and mean voltage measured by the slant type hot-wire probe rotating into 6 orientations. We investigate the effects of Coriolis and centrifugal forces on the turbulence structure.

SPECTRAL INEQUALITIES OF THE LAPLACIAN ON A CURVED TUBE WITH VARYING CROSS SECTION

  • Mao, Jing;Hou, Lanbao
    • 대한수학회논문집
    • /
    • 제28권1호
    • /
    • pp.177-181
    • /
    • 2013
  • In this note, we consider a curved tube with varying cross-section formed by rotating open bounded Euclidean domains with respect to a reference curve, and successfully give a lower bound to the threshold of the Laplacian on the tube, subject to Dirichlet boundary conditions on the surface and Neumann conditions at the ends of the tube. This generalizes the corresponding result in [1].

복합선형 사고예측모형 개발에 관한 연구 (A Development of the Accident Prediction Models Considering Compound Curves)

  • 이수일;원제무;임지희;이재명
    • 한국안전학회지
    • /
    • 제25권2호
    • /
    • pp.84-88
    • /
    • 2010
  • The main point of this study is to find ways to prevent accidents at complex linear sections in advance by improving geometric structure elements that can be considered from the designing stage. Complex linear roads are consisted of sections where straight sections connect with curved sections or sections where curved sections connect with curved sections with relatively high possibility of accidents and accidents can be reduced through improving designing elements in these sections. Therefore, this study aims to develop accident forecasting model in complex linear roads and to clarify major elements affecting traffic accidents. The results of analysis showed that the groups are divided into a group less than 355m based on curve radius of 355m, a group whose curve radius exceeds 355m and a group whose incline exceeds -0.79 and a group whose curve radius is below 355m and incline exceeds -0.79 for straight section + curved section, and for curved section + curved section, it is divided into a group whose first curved section is less than 410m based on curve radius of 410m and the first curve is turning right and a group exceeding 410m and the first curve is turning left. The major variables common in 2 models are front curve radius and curve types(left, right), road surfaces, weather.