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SPECTRAL INEQUALITIES OF THE LAPLACIAN ON A

CURVED TUBE WITH VARYING CROSS SECTION

Jing Mao and Lanbao Hou

Abstract. In this note, we consider a curved tube with varying cross-
section formed by rotating open bounded Euclidean domains with respect
to a reference curve, and successfully give a lower bound to the threshold
of the Laplacian on the tube, subject to Dirichlet boundary conditions
on the surface and Neumann conditions at the ends of the tube. This
generalizes the corresponding result in [1].

1. Introduction

A lower bound to the spectral threshold of the Laplacian of curved tubes
with constant cross section has been given in [1]. In this note, we consider a
new model, a curved tube with varying cross-section. More precisely, given
a bounded or unbounded open interval I, let Γ(s) : I → R

d (d ≥ 2) be a
unit-speed curve with curvatures

ki : I → R, i ∈ {1, . . . , d− 1},
with respect to an appropriate Frenet frame {e1, . . . , ed} satisfying the assump-
tion 〈H1〉

〈H1〉. Γ possesses a positively oriented C1-smooth Frenet frame {e1, . . . , ed}
with the properties that e1 = Γ̇ and ėi(s) lies in the span of e1(s), . . . , ei+1(s)
for any i ∈ {1, . . . , d− 1} and any s ∈ I.

Given a bounded open connected set w ∈ R
d−1 with the center of mass at the

origin, we define the tube Ω by expanding or shrinking w in all directions f(s)
times with respect to its center of mass for each s ∈ I and rotating f(s)w with
respect to the curve Γ(s) possessing the Frenet frame above, i.e.

(1.1) Ω := L(I × w),L(s, u2, . . . , ud) := Γ(s) + f(s)eµ(s)uµ,

where f ∈ L∞(I) ∩ C1(I) is a positive or negative real-valued function. Ob-
viously, when f(s) = 1, our model is the same as the curved tube considered
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in [1]. The repeated indices invention is used in this note, that is, the Latin
and Greek indices run over 1, 2, . . . , d and 2, . . . , d, respectively. Without loss
of generality, we assume that f(s) is positive for any s ∈ I. If necessary, one
can additionally require that f(s) preserves the center of mass at the origin
for each s ∈ I. This setting makes sense, since it can be easily seen when w is
a circular region in R

d−1 with the center of mass at the origin. We make the
assumption 〈H2〉 as follows.

〈H2〉. (1) k1 ∈ L∞(I) and a‖k1‖∞‖f‖∞ < 1,
(2) Ω does not overlap itself, where a := sup

u∈w
|u| = sup

u∈w

√
uµuµ.

The assumption 〈H2〉 makes sure that the mapping L is a diffeomorphism what
we will see in the next section.

Denote by ∆ and σ(−∆) the Laplacian, subject to Dirichlet boundary con-
ditions on surface L(I × ∂w) and, if ∂I is not empty, Neumann boundary
conditions on the ends L(∂I ×w) of the tube, on the Hilbert space L2(Ω) and
the spectrum of the nonnegative Laplacian −△, respectively. We can prove the
following.

Theorem 1.1 (Main theorem). Under the assumptions 〈H1〉 and 〈H2〉, we

have

(1.2) inf σ(−∆) ≥ ‖f‖−2
∞

inf
s∈I

λ0(k1(s)),

where

(1.3) λ0(k) := inf
ψ∈W

1,2
0

(w)

∫
w
ψ,µ(u)ψ,µ(u)(1− ku2f)du∫
w
|ψ(u)|2(1− ku2f)du

.

Especially, when f(t) = c > 0 is a function of constant value, then

inf σ(−∆) ≥ c−2 min

{
λ0

(
sup
s∈I

k1(s)

)
, λ0

(
inf
s∈I

k1(s)

)}
,

and moreover, in this case we have

λ0(k) ≥
( |Sd−1|
cd|S1|a|w|

) 2

d

j2d−2

2
,1
,

where λ0(k) denotes the spectral threshold of −△ in the tube of cross section

cw, a domain formed by expanding or shrinking the domain w in all directions

c times with respect to its center of mass, built either over a circle of curvature

k if k 6= 0 or over a straight line if k = 0, and moreover, | · | and j d−2

2
,1 denote

the volume of the prescribed domain and the first zero of the Bessel function

J d−2

2

respectively.
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2. Proof of main theorem

Under the assumption 〈H1〉, we have the Serret-Frenet formula

(2.1) ėi = Kijej ,

where K ≡ (Kij) is the skew-symmetric d× d matrix defined by

K :=




0 k1 . . . 0 0
−k1 0 . . . 0 0
...

. . .
...

0 0 . . . 0 kd−1

0 0 . . . −kd−1 0



,

with ki the ith curvature of Γ, a continuous function of the arc-length parameter
s ∈ I.

Let Ω0 := I × w and u := (u2, . . . , ud) ∈ w. Then the tube Ω is the image
of the mapping L : Ω0 → R

d defined by (1.1). Assuming that L : Ω0 → Ω is
a C1-diffeomorphism, then we can identify Ω with the Riemannian manifold
(Ω0, G), where G ≡ (Gij) is the metric induced by the immersion L. Hence,
by applying (1.1) and the expression of the standard Euclidean metric of Rd,
we know that the metric matrix G satisfies

G :=




h1 h2 h3 . . . hd−1 hd
h2 f2 0 . . . 0 0
h3 0 f2 . . . 0 0
...

. . .
...

hd−1 0 0 . . . f2 0
hd 0 0 . . . 0 f2




,

with

h1 := h2 + f2h̃µh̃µ + (fsuµ)
2, h(s, u) := 1− k1u2f(s), h̃µ := −Kµνuν,

and

hµ := f2h̃µ + uµffs,

where fs denotes the derivative of f with respect to s, and Kµν , 2 ≤ µ, υ ≤ d

are the entries of the matrix K above.
By the skew-symmetric property of K, we could easily get that |G| :=

detG = f2(d−1)h2, which allows us to define the volume element of Ω by
dΩ := fd−1h(s, u)dsdu, with du = du2 · · · dud the (d−1)-dimensional Lebesgue
measure of w.

So, under the first condition (1) of the assumption 〈H2〉, the induced metric
matrix G is degenerated, which implies that the mapping L is an immersion.
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In this case, we can easily obtain the inverse matrix G−1 of G given as follows
(2.2)

G−1 :=
1

f2h2




f2 −h2 −h3 . . . −hd−1 −hd
−h2 h2 +

h2

2

f2

h2h3

f2 . . .
h2hd−1

f2

h2hd

f2

−h3 h3h2

f2 h2 +
h2

3

f2 . . .
h3hd−1

f2

h3hd

f2

...
. . .

...

−hd−1
hd−1h2

f2

hd−1h3

f2 . . . h2 +
h2

n−1

f2

hd−1hd

f2

−hd hdh2

f2

hdh3

f2 . . .
hdhd−1

f2 h2 +
h2

d

f2




.

Naturally, we know that the mapping L is a C1-diffeomorphism under the
assumption 〈H2〉. This indicates that our assumption makes sense, therefore
we could investigate the spectrum of the Laplacian on the Riemannian manifold
(Ω0, G) if we want to know the spectrum of the Laplacian on the curved tube Ω.
Actually, by introducing the unitary transformation ψ → ψL, we may identify
the Hilbert space L2(Ω) with H := L2(Ω0, dΩ) and the Laplacian ∆ = ∆Ω with
the self adjoint operator H associated with the quadratic form Q on H defined
by

(2.3) Q(ψ, ψ) :=

∫

Ω0

ψ,iG
ijψ,jdΩ

and
(2.4)

ψ ∈ DomQ :=
{
ψ ∈ W 1,2(Ω0, dΩ)|ψ(q, u) = 0 for a.e. (s, u) ∈ I × ∂w

}
,

where ψ(x) for x ∈ ∂Ω0 means the corresponding trace of the function ψ on
the boundary.

As in [1], we can prove the following lemma.

Lemma 2.1. In matrix-inequality sense, we have

G−1 ≥ diag

(
0,

1

f2(s)
, . . . ,

1

f2(s)

)

for each s ∈ I.

Proof. By (2.2), we have

G−1 − diag

(
0,

1

f2(s)
, . . . ,

1

f2(s)

)
= (hf)−2A,

where A := diag(f2, 0, . . . , 0) + τ , and τ is a matrix depending on the entries
of G−1. However, A is positive definite, since for any ξ ∈ Rd we have

ξiAijξj ≡ f2ξ21 − 2ξ1hµξµ + (f−1hµξµ)
2 = (−fξ1 + f−1hµξµ)

2 ≥ 0,

then our conclusion follows. �

Then, by using this lemma, we could give the proof of our main theorem as
follows.
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Proof of Theorem 1.1. By (1.3), Lemma 2.1, (2.3) and (2.4), for any ψ ∈
DomQ we have

Q(ψ, ψ) ≥
∫

I

ds

∫

w

f−2ψ,µ(s, u)ψ,µ(s, u) (1− ksf(s)u2) f
d−1du

≥ ‖f‖−2
∞

∫

I

λ0(k1(s))f
d−1ds

∫

w

|ψ(s, u)|2 (1− ksf(s)u2) du

≥ ‖f‖−2
∞

inf
s∈I

λ0(k1(s))

∫

I

ds

∫

w

|ψ(s, u)|2 (1− ksf(s)u2) f
d−1du,

which implies our conclusion (1.2). Especially, when f(s) ≡ c is a function
of constant value, by Lemma 4.1, Proposition 4.2 and Proposition 4.5 in [1],
the rest part of our main theorem follows since there is no essential difference
between the case f(s) ≡ c and the case f(s) ≡ 1. �
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Instituto Superior Técnico
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