• 제목/요약/키워드: curved pipe

검색결과 97건 처리시간 0.025초

곡선경로를 가지는 마이크로 터널링의 무인 원격 측량을 위한 자동 추미식 거리 및 각도 측정 시스템 (Development of Auto Tracking Total Station for Unmanned Remote Surveying of Micro Tunneling with Curved Courses)

  • 이진이;김정훈
    • 제어로봇시스템학회논문지
    • /
    • 제9권11호
    • /
    • pp.891-898
    • /
    • 2003
  • Unmanned remote survey system is proposed to measure distance and angle of the present position of micro-tunneling machine from any starting point of entrance. Cross type linear LED that can be controlled remotely is attached to the tunneling machine. Range finder and angle measuring devise fixed to internal of the pipe can scan the center of LED. Distance and angle measuring devises are disposed in the measurable position of the pipe, then the present position of tunneling machine can be calculated automatically from the measurements.

Finite element modeling of tubular truss bearings

  • Kozy, B.;Earls, C.J.
    • Steel and Composite Structures
    • /
    • 제5권1호
    • /
    • pp.49-70
    • /
    • 2005
  • This paper reports on finite element analysis techniques that may be applied to the study of circular hollow structural sections and related bearing connection geometries. Specifically, a connection detail involving curved steel saddle bearings and a Structural Tee (ST) connected directly to a large-diameter Hollow Structural Section (HSS) truss chord, near its open end, is considered. The modeling is carried out using experimentally verified techniques. It is determined that the primary mechanism of failure involves a flexural collapse of the HSS chord through plastification of the chord wall into a well-defined yield line mechanism; a limit state for which a shell-based finite element model is well-suited to capture. It is also found that classical metal plasticity material models may be somewhat limited in their applicability to steels in fabricated tubular members.

삼각단면 극소히트파이프의 작동특성에 관한 기초 연구 (Fundamental study on performance characteristics of a micro heat pipe with triangular cross section)

  • 문석환;김종오;김철주
    • 설비공학논문집
    • /
    • 제11권2호
    • /
    • pp.176-184
    • /
    • 1999
  • Numerical and experimental studies were performed to examine the characteristics of heat and mass transfer processes for a Micro Heat Pipe(MHP) with a triangular cross-section. Solutions on mass flow rate, pressure variation, and radius of meniscus were obtained using the mathematical model developed by Faghri and Khrustalev. To obtain an increase in capillary limitation, a triangular tube with curved walls was designed and fabricated. The measurement by microscope showed that the radius at corners of the tube was ranging between 0.03-0.05mm. Performance test for MHPs using the triangular tube with curved walls proved a substantial increasement in heat transport limitation, with 4.5W and 2.0W in case of using water and ethanol as a working fluid, respectively. In the previous study by Faghri a limitation of 0.5W was reported for a water MHP with a regular triangular tube.

  • PDF

강아지풀 형상을 닮은 관내 주행로봇 개발 (Development of a pipeline robot like foxtail)

  • 최용호;양현석;박노철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1167-1172
    • /
    • 2007
  • Generally inpipe robot needs force above standing for contacting robot to pipe. If the environment of the pipe-inside does not change, there is not a problem. But if the pipe radius change, or occur the obstacle which it does not intend, problem gets. So it uses a different system and must know an environment change, and changing the shape or a form of the robot. The research uses the flexible leg and is the robot which is adapted to the environment change of the pipe. The advantage of this robot is possible to move when it does not need to recognize a change of environment of pipe. Leg is bend with one direction. When it moves part that there are legs effect of leg direction the robot is moved with only one direction. If friction between legs and pipe is sufficient, not only verticality pipe moving, but also curved pipe moving. Also the obstacle of the pipe inside occurs and the diameter of the pipe inside changes, this robot can move if it does not use another system or device.

  • PDF

원형 단면을 갖는 180° 굽은 곡관내 발달하는 난류유동에 관한 수치해석 (Numerical Simulation of Developing Turbulent Flow in a Circular Pipe of 180° Bend)

  • 명현국
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.966-972
    • /
    • 2006
  • A numerical simulation is performed fur developing turbulent flow in a strongly curved 180 deg pipe and its downstream tangent by a new solution code(PowerCFD) which adopts an unstructured cell-centered method. The governing equations are discretized as the full elliptic from of the equations of motion. Three typical two-equation turbulence models of low-Reynolds-number form are used to approximate the turbulent stress field. Solutions fur both streamwise and circumferential velocity components are compared with the experimental data by Azzola et at.(1986). The ${\kappa}-{\omega}$ model by Wilcox(1988) is found to give better prediction performance than the other two. Predicted secondary velocities and streamwise velocity component contours at sequential longitudinal stations are also presented in order to enable a detailed description of the complete flow. It is also found that, in the bend both mean streamwise and secondary velocities never achieve a fully-developed state and the code is capable of producing very well the complex nature of steady flow in a strongly curved pipe.

유체의 속도와 압력을 고려한 석유화학 플랜트 배관계의 진동특성에 대한 연구 (A Study on Vibrational Characteristics of Piping Systems in Petrochemical Plants Considering the Fluid Velocity and Pressure)

  • 김경훈;김정훈;최명진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1053-1060
    • /
    • 2006
  • This paper consider an initially deformed state caused by the pressurized fluid flowing through the pipe at a constant velocity. When the initial forte is neglected in curved pipes, the natural frequencies are reduced as flow velocity increases. However, when the initial tension took into account, the natural frequencies are not changed with the change of the flow velocity. As the internal pipe pressure is increased the natural frequencies are also slightly increased. In free vibrational simulation of piping systems in petrochemical plants, it is necessary to calculate the initial state force due to the velocity and the pressure of the fluid flow from the equilibrium first, then the force should be included in the equation of motion of the systems to get more accurate natural frequencies. In this study, calculate the mass matrix and stiffness matrix of piping system by MATLAB

  • PDF

곡선부의 구조 특성을 고려한 선박용 파이프 루프 설계식 개발 (Development of Design Formulas for Pipe Loops Used in Ships Considering the Structural Characteristics of Curved Portions)

  • 박치모;배병일
    • 한국해양공학회지
    • /
    • 제26권5호
    • /
    • pp.87-93
    • /
    • 2012
  • Many longitudinally-arranged pipes in ships are equipped with loops as a measure to reduce stresses caused by displacement loads conveyed from the hull girder bending and/or thermal loads of carried fluid of non-ambient temperature. But as the loops have some negative effects such as causing extra manufacturing cost and occupying extra space, the number and the dimensions of the loops need to be minimized. In the meanwhile, a design formula for pipe loops has been developed by modeling them as a spring element of which stresses and axial stiffness are calculated based on the beam theory. But as the beam theory turns out to be inappropriate to deal with the complex structural behavior in the curved corner portion of the loop, this paper aims at improving the previously developed design formula by adopting correction factors which can allow for the gap between the results of beam theory and a more accurate analysis. This paper adopts a finite element analysis with two-dimensional shell elements with some validation work for it. The paper ends with a sample application of the proposed formulas showing their accuracy and efficiency.

한계하중법을 이용한 Curved CT 시험편의 파괴저항곡선에 미치는 형상변수 영향 평가 (Evaluation of Shape Parameter Effect on the J-R Curve of Curved CT Specimen Using Limit Load Method)

  • 신인환;박치용;석창성;구재민
    • 대한기계학회논문집A
    • /
    • 제38권7호
    • /
    • pp.757-764
    • /
    • 2014
  • 본 연구에서는 한계하중법을 이용하여 Curved CT 시험편의 J-적분에 미치는 형상변수 영향을 평가하였다. 주요 형상변수인 시험편의 길이와 폭의 비(L/W), 평균곡률반경과 두께의 비($R_m/t$)에 대한 파괴인성시험 후, ASTM 시험법에서 제시한 표준시험편의 J-적분과 한계하중법으로 구한 J-적분을 각각 적용하여 구한 파괴저항곡선을 평가하였다. 또한 배관의 파괴저항곡선을 잘 모사한다고 알려진 휨 광폭평판(CWP) 및 표준시험편의 파괴저항곡선과 비교 고찰하여 최종적으로 Curved CT 시험편의 파괴저항곡선에 대한 유효성을 평가하였다. 본 논문의 결과는 향후 실배관의 정확한 파괴인성을 평가하는 데 있어 Curved CT 시험편의 적용가능성을 평가하는 데에 활용할 수 있다.

Methods and Systems for High-temperature Strain Measurement of the Main Steam Pipe of a Boiler of a Power Plant While in Service

  • Guang, Chen;Qibo, Feng;Keqin, Ding
    • Journal of the Optical Society of Korea
    • /
    • 제20권6호
    • /
    • pp.770-777
    • /
    • 2016
  • It has been a challenge for researchers to accurately measure high temperature creep strain online without damaging the mechanical properties of the pipe surface. To this end, a noncontact method for measuring high temperature strain of a main steam pipe based on digital image correlation was proposed, and a system for monitoring of high temperature strain was designed and developed. Wavelet thresholding was used for denoising measurement data. The sub-pixel displacement search algorithm with curved surface fitting was improved to increase measurement accuracy. A field test was carried out to investigate the designed monitoring system of high temperature strain. The measuring error was less than $0.4ppm/^{\circ}C$, which meets actual measurement requirements for engineering. Our findings provide a new way to monitor creep damage of the main steam pipe of a boiler of an ultra-supercritical power plant in service.