• Title/Summary/Keyword: curve sections

Search Result 202, Processing Time 0.024 seconds

A Method of Compounding Application of Longitudinal Grade and Superelevation on Left Curved Section in Arterial for Preventing Hydroplaning (간선도로 좌곡선부 전후구간 수막현상 방지를 위한 종·횡단경사 조합 적용방안)

  • Jung, Ji Hwan;Oh, Heung Un
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.105-118
    • /
    • 2015
  • PURPOSES : This study aims to evaluate the road safety of the super-elevation transition section of a left turn curve and suggest the minimum longitudinal grade of a super-elevation transition section to be used before and after a left curved section. METHODS : We evaluated the road condition by means of the safety-criterion-evaluation method involving side friction factors, and then solve the problem by introducing the minimum longitudinal grade criterion based on conditions described in the hydraulics literature. RESULTS : It was calculated that when a road satisfies hydroplaning conditions, the difference between side friction assumed and side friction demanded is less than -0.04. In this case, the safety criterion for the condition is unsatisfied. Conversely, when a road is in a normal state under either wet or dry conditions, it was calculated that the difference between side friction assumed and side friction demanded is more than 0.01. Thus, the safety criterion for this condition is found to be satisfied. After adjusting the minimum longitudinal grade applied to a super-elevation transition section, the hydroplaning condition can be eliminated and the safety criterion can be met for all sections. CONCLUSIONS : It is suggested that a minimum longitudinal grade should be provided on super-elevation transition sections in order to prevent hydroplaning.

Automatic Surface Generation for Extrusion Die of Arbitrarily Shaped Section using B-spline Surfaces and Scalar Field Theory (B-스플라인 곡면과 스칼라장 이론을 이용한 임의의 형상의 압출금형 곡면의 자동생성)

  • 임종훈;김광혁;유동진;양동열
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.33-38
    • /
    • 2004
  • A new approach for the design of extrusion die surface of arbitrarily shaped section is presented. In order to generate the extrusion die surface. an automatic surface construction method based on B-spline surface and scalar field theory is proposed. The isothermal lines and stream lines designed in the scalar field are introduced to find the control points which are used in constructing B-spline surfaces. Intersected points between the isothermal lines and stream lines are used to construct B-spline surfaces. The inlet and outlet profiles are precisely described with B-spline curves by using the centripetal method for uniform parameterization. The extrusion die surface is generated by using the cubic curve interpolation in the u- and v-directions. A quantitative measure for the control of surface is suggested by introducing the tangential vectors at the inlet and outlet sections. To verify the validity and effectiveness of the proposed method, automatic surface generation is carried out for extrusion dies of arbitrarily shaped sections.

An Empirical Correlation for Critical Flow Rates of Subcooled Water Through Short Pipes with Small Diameters

  • Park, Choon-Kyung;Park, Jee-Won;Chung, Moon-Ki;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.35-44
    • /
    • 1997
  • Critical too-Phase flow rates of subcooled water through Short Pipes (L 140039n) with small diameters (D$\leq$7.15 min) have been experimentally investigated for wide ranges of subcooling (0~199$^{\circ}C$) and pressure (0.5~2.0 MPa). To examine the effects of various parameters (i.e., the location of flashing inception, the degree of subcooling, the stagnation temperature and pressure, and the pipe size) on the critical two-phase flow rates of subcooled water through short pipes with small diameters, a total of 135 runs were made for various combinations of test parameters using four different L/D test sections. Experimental results that show effect of various parameters on subcooled critical two phase flow rates are presented in the form of graphs such as the dimensionless mass flux ( $G^{*}$) versus the dimensionless subcooling ( $T_{sub}$$^{*}$) curve. An empirical correlation expressed in terms of a dimensionless subcooling is also obtained for subcooled two-phase flow rates through present test sections. Comparisons between the mass fluxes calculated by present correlation and a total of 755 selected experimental data points of 9 different investigators show that the agreement is fairly good except for very low subcooling data obtained from small L/D (less than 10) orifices.s.s.s.

  • PDF

Field Measurements of Ground Movements Around Tunnel (현장계측에 의한 터널주변지반의 변위연구)

  • 홍성완;배규진
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.41-54
    • /
    • 1985
  • Generally, ground settlements and lateral displacements are accompanied by underground excavation associated with open-cut or tunnling. These ground movements cause a harmful influence upon nearby super.structures and sub-structures. Occasionally, the ground movements may pose serious problems as the function of the nearby structures may be disrupted. Therefore, prior to the subway construction in an urban area, it is necessary to identify the causes of ground settlements and estimating the extent St the magnitude of ground movements since any potential damage to the nearby structures such as gas lines, water mains, high buildings and cultural assets must be assessed. The research was performed mainly on ground movements such as surface settlements, lateral displacements, subsurface settlements and crown settlements to predict the maximum settlement and settlement zone, and to identify the causes of ground settlements in NATM sections of Busan subway. As a result, it was found that lateral distribution of settlements could be approximated reasonably by a Gaussian normal probability curve and longitudinal distribution of settlements by a cumulative Gaussian probability curve, and that the early closure of temporary invert was very important to minimize ground settlements.

  • PDF

Determination of equivalent blasting load considering millisecond delay effect

  • Song, Zhan-Ping;Li, Shi-Hao;Wang, Jun-Bao;Sun, Zhi-Yuan;Liu, Jing;Chang, Yu-Zhen
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.745-754
    • /
    • 2018
  • In the analysis of the effects of rock tunnel blasting vibration on adjacent existing buildings, the model of simplified equivalent load produces higher calculation result of vibration, due to the lack of consideration of the millisecond delay effect. This paper, based on the static force equivalence principle of blasting load, proposes a new determination method of equivalent load of blasting vibration. The proposed method, based on the elastic-static force equivalence principle of stress wave, equals the blasting loads of several single blastholes in the same section of millisecond blasting to the triangle blasting load curve of the exploded equivalent elastic boundary surface. According to the attenuation law of stress wave, the attenuated equivalent triangle blasting load curve of the equivalent elastic boundary is applied on the tunnel excavation contour surface, obtaining the final applied equivalent load. Taking the millisecond delay time of different sections into account, the time-history curve of equivalent load of the whole section applied on the tunnel excavation contour surface can be obtained. Based on Sailing Tunnel with small spacing on Sanmenxia-Xichuan Expressway, an analysis on the blasting vibration response of the later and early stages of the tunnel construction is carried out through numerical simulation using the proposed equivalent load model considering millisecond delay effect and the simplified equivalent triangle load curve model respectively. The analysis of the numerical results comparing with the field monitoring ones shows that the calculation results obtained from the proposed equivalent load model are closer to the measured ones and more feasible.

Development of Regional Regression Model for Estimating Flow Duration Curves in Ungauged Basins (미계측 유역의 유황곡선 산정을 위한 지역회귀모형의 개발)

  • Lee, Tae Hee;Lee, Min Ho;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.427-437
    • /
    • 2016
  • The objective of this study is to develop the regional regression models based on the physiographical and climatological characteristics for estimating flow duration curve (FDC) in ungauged bsisns. To this end, the lower sections with duration from 185 to 355 days of FDCs were constructed from the 16 gauged streamflow data, which were fitted to the two-parameter logarithmic type regression equation. Then, the parameters of the equation were regionalized using the basin characteristics such as basin area, basin slope, drainage density, mean annual precipitation, mean annual streamflow, runoff curve number in order that the proposed regression model can be used for ungauged basin. From the comparison of the estimated by the regional regression model with the observed ones, the model with the combination of basin area, runoff curve number, mean annual precipitation showed the best performance.

Evaluation of Curving Performance and Running Safety of New High-Power Electric Locomotive (신형 고출력 전기기관차의 곡선추종성 및 주행안전성 평가)

  • Ham, Young Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.827-832
    • /
    • 2013
  • In this study, curve responsiveness was assessed based on the lateral force and running safety was evaluated based on the wheel unloading ratio and derailment coefficient, which is the ratio of the wheel load and the lateral force. The evaluation of the curving performance and running safety of the new high-power electric locomotive showed that the derailment coefficient appeared higher when the wheel-set was set to the front of the train instead of being placed backward, and the maximum value of the derailment coefficient was recorded as 0.572 on the Gyeongbu line. Furthermore, the lateral force increased in curved sections, and it appeared to be proportional to the curve radius. Meanwhile, a maximum axis lateral force of 77.6 kN was recorded on the Taebaek line, and the wheel unloading ratio was 47.6% on the Yeongdong line. Finally, the running safety at the maximum speed as well as the through-curve performance of the curve radius satisfied the required standards.

The prognostic value of median nerve thickness in diagnosing carpal tunnel syndrome using magnetic resonance imaging: a pilot study

  • Lee, Sooho;Cho, Hyung Rae;Yoo, Jun Sung;Kim, Young Uk
    • The Korean Journal of Pain
    • /
    • v.33 no.1
    • /
    • pp.54-59
    • /
    • 2020
  • Background: The median nerve cross-sectional area (MNCSA) is a useful morphological parameter for the evaluation of carpal tunnel syndrome (CTS). However, there have been limited studies investigating the anatomical basis of median nerve flattening. Thus, to evaluate the connection between median nerve flattening and CTS, we carried out a measurement of the median nerve thickness (MNT). Methods: Both MNCSA and MNT measurement tools were collected from 20 patients with CTS, and from 20 control individuals who underwent carpal tunnel magnetic resonance imaging (CTMRI). We measured the MNCSA and MNT at the level of the hook of hamate on CTMRI. The MNCSA was measured on the transverse angled sections through the whole area. The MNT was measured based on the most compressed MNT. Results: The mean MNCSA was 9.01 ± 1.94 ㎟ in the control group and 6.58 ± 1.75 ㎟ in the CTS group. The mean MNT was 2.18 ± 0.39 mm in the control group and 1.43 ± 0.28 mm in the CTS group. Receiver operating characteristics curve analysis demonstrated that the optimal cut-off value for the MNCSA was 7.72 ㎟, with 75.0% sensitivity, 75.0% specificity, and an area under the curve (AUC) of 0.82 (95% confidence interval [CI], 0.69-0.95). The best cut off-threshold of the MNT was 1.76 mm, with 85% sensitivity, 85% specificity, and an AUC of 0.94 (95% CI, 0.87-1.00). Conclusions: Even though both MNCSA and MNT were significantly associated with CTS, MNT was identified as a more suitable measurement parameter.

A Propeller Design Method with a New Blade Section : Applied to Container Ships (새로운 날개단면을 이용한 프로펠러 설계법 - 콘테이너선에 응용 -)

  • J.T. Lee;M.C. Kim;J.W. Ahn;S.H. Van;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.40-51
    • /
    • 1991
  • A Propeller design method using the newly developed blade section(KH18), which behaves better cavitation characteristics, is presented. Experimental results for two-dimensional foil sections show that the lift-drag curve and the cavitation-free bucket diagram of the new blade section are wider comparing to those of the existion NACA sections. This characteristic of the new section is particularly important for marine propeller applications since angle of attack variation of the propeller blade operating behind a non-uniform ship's wake is relatively large. A lifting surface theory is used for the design of a propeller with the developed section for a 2700 TEU container ship. Since the most suitable chordwise loading shape is not known a priori, chordwise loading shape is chosen as a design parameter. Five propellers with different chordwise loading shapes and different foil sections are designed and tested in the towing tank and cavitation tunnel at KRISO. It is observed by a series of extensive model tsets that the propeller(KP197) having the chordwise loading shape, which has less leading edge loading at the inner radii and more leading edge loading at the outer radii of 0.7 radius, has higher propulsive efficiency and better cavitation characteristics. The KP197 propeller shows 1% higher efficiency, 30% cavitation volume reduction and 9% reduction of fluctuating pressure level comparing to the propeller with an NACA section. More appreciable efficiency gain for the new blade section propeller would be expected by reduction of expanded blade area considering the better cavitation characteristics of the new blade section.

  • PDF

A study of making a dress form for women using a 3D printer (3D 프린터를 이용한 여성용 인대 제작 연구)

  • Oh, Seol Young
    • The Research Journal of the Costume Culture
    • /
    • v.24 no.6
    • /
    • pp.725-742
    • /
    • 2016
  • In the Korean fashion industry, 3D printing systems are considered as new technology and a new opportunity. With 3D printers, consumers can be manufacturers and individuals can develop businesses with little upfront capital. In this study, a dress form for the typical Korean women's body shape was developed using 3D technology (3D scanning, 3D modeling, and 3D printing). Ten women with apparel sizes 85-91-160 were selected from 3D body-scan data collected by SizeKorea of 201 women aged 25 to 34 (2010). First, 15 horizontal cross-sections were collected from the 3D scan data of the 10 subjects. Then, inside lines of those cross-sections were drawn at 15-degree intervals, and the lengths were measured. The average of the inside lines was connected to the internal spline curve, and the curves were used as the average cross-sections. The average torso body and the dress form of Korean women were developed into a 3D solid model using a 3D CAD program (Solidworks 2012). An output mockup was printed by the FDM type's 3D printing system (Bonbot 1200, Bonbot 3-H4) using PLA material. The dimensions comparing the 3D solid modeling to the 3D printed mockup of the dress form were measured, and minor differences were between 0.00cm and 0.40cm. In the future, 3D printing systems are expected to be in use for various personalized dress forms.