• Title/Summary/Keyword: curve sections

Search Result 202, Processing Time 0.022 seconds

A Study on the Variation of Water Quality and the Evaluation of Target Water Quality Using LDC in Major Tributaries of Nakdong River Basin (낙동강수계 주요 지류의 수질특성변화 및 LDC를 이용한 목표수질 평가에 관한 연구)

  • Lee, Sangsoo;Kang, Junmo;Park, Hyerim;Kang, Jeonghun;Kim, Shin;Kim, Jin-pil;Kim, Gyeonghoon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.521-534
    • /
    • 2020
  • In this study, the variation of water quality was analyzed for six sites in major tributaries of the Nakdong River Basin. Standard-FDC (Flow Duration Curve) was developed using PM (Percentile Method), one of the statistical FDC estimation methods. The LDC (Load Duration Curve) was obtained using the developed FDC. The current method and the LDC evaluation method were compared and analyzed to evaluate the achievement of TWQ (Target Water Quality). Regarding the monthly flow rate variation, the five sites showed the distribution of the lowest flow rate between May and June, indicating a high probability of dry weathering of the streams. The variation of water quality confirmed the vulnerable timing of flow rate in each site, and it is therefore deemed necessary to plan to reduce T-P and TOC. A comparison and evaluation of TWQ showed that there was a difference between the TWQ values achieved by the two techniques. In addition, the margin ratio to the 50% excess ratio can be found in the LDC evaluation. The results of the LDC evaluation by section and by month showed whether or not the water quality was exceeded by flow conditions, along with the vulnerable sections and timing. Accordingly, it is judged that this method can be used for water quality management in TMDLs (Total Maximum Daily Loads).

A Study of Smart Convergence Design of English Vocabulary Learning Contents Applying the Periodic Repetitive Method (주기적 반복법을 적용한 영단어 학습콘텐츠 스마트 융합 설계 연구)

  • Kim, Young-Sang
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.4
    • /
    • pp.133-140
    • /
    • 2016
  • This paper suggests designing how to acquire English vocabularies on the smart devices based on the research that a ground-breaking English Vocabulary Learning Contents needs developing. The method makes it possible to develop the contents which helps the learners to master English vocabularies effectively on the smart phone. The core idea of this paper is as in the following: 1) English learners learn 30 vocabularies for three minutes 10 times (one is for a new learning and the other nine ones are for reviews about the first learning) a day. 2) Considering Ebbinghaus Forgetting Curve, the reflection study proposes to provide the learners with three times' reviews: one day, 10days, and 30days later from which they learn the first 30 vocabularies. This contents is mainly made up of 5 developing sections (1)to generate App ID, (2)to access App, (3)to set up Alarm, (4)to process Word learning, and (5)to monitor the result of learning. This proposed idea is optimized to enhance the memory by Ebbinghaus Periodic Repetitive Method, which makes the learners satisfied with their English vocabulary learning.

A Study of the Relationship between Driver's Anxiety EEG & Driving Speed in Motorway Sections (주행속도와 기하구조에 따른 운전자 불안뇌파 분석 -고속주행시를 중심으로-)

  • Lim, Joon-Bum;Lee, Soo-Beom;Kim, Keun-Hyuk;Kim, Sang-Youp;Choi, Jai-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.167-175
    • /
    • 2012
  • For establishing a standard of design element of the smart highway, this study investigated driver's anxiety EEG according to running speeds and geometric designs. Also, the experiment was implemented on 60 subjects. Based on running speed data and brainwave data, which were obtained from the experiment, this study analyzes anxiety EEG according to running speeds and geometric designs, and finally draws a forecasting model of anxiety EEG by selecting affecting factors of anxiety EEG. Forecasting model shows that left curve is the most influential on anxiety EEG figure. The reason is because when driver is driving on the first-lane, his or her visibility is impeded by a median strip. For this reason, anxiety EEG figure increases. And also steep downward slope and large radius of curve are heavily influential on driver's anxiety EEG figure. It is judged that anxiety EEG figure is increased by high speed on those section. Thus, the forecasting model of anxiety EEG suggested on this study will be utilized for design phase, and will decide the design speed on the superhighway. So, it will be used to make practical and safety road.

An analytical model for PVC-FRP confined reinforced concrete columns under low cyclic loading

  • Fang, Yuan;Yu, Feng;Chen, Anchun;Wang, Shilong;Xu, Guoshi
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.179-196
    • /
    • 2021
  • Experimental investigations on the seismic behaviors of the PVC-FRP Confined Reinforced Concrete (PFCRC) columns under low cyclic loading are carried out and two variable parameters including CFRP strips spacing and axial compression ratio are considered. The PFCRC column finally fails by bending and is characterized by the crushing of concrete and yielding of the longitudinal reinforcement, and the column with a high axial compression ratio is also accompanied by the cracking of the PVC tube and the fracture of CFRP strips. The hysteretic curves and skeleton curves of the columns are obtained from the experimental data. With the increase of axial compression ratio, the stiffness degradation rate accelerates and the ductility decreases. With the decrease of CFRP strips spacing, the unloading sections of the skeleton curves become steep and the ductility reduces significantly. On the basis of fiber model method, a numerical analysis approach for predicting the skeleton curves of the PFCRC columns is developed. Additionally, a simplified skeleton curve including the elastic stage, strengthening stage and unloading stage is suggested depending on the geometric drawing method. Moreover, the loading and unloading rules of the PFCRC columns are revealed by analyzing the features of the skeleton curves. The quantitative expressions that are used to predict the unloading stiffness of the specimens in each stage are proposed. Eventually, an analytical model for the PFCRC columns under low cyclic loading is established and it agrees well with test data.

Analysis of surface settlement troughs induced by twin shield tunnels in soil: A case study

  • Ahn, Chang-Yoon;Park, Duhee;Moon, Sung-Woo
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.325-336
    • /
    • 2022
  • This paper analyzes the ground surface settlements induced by side-by-side twin shield tunnels bored in sedimentary soils, which primarily consist of sand with clay strata above the tunnel crown. The measurements were obtained during the construction of twin tunnels underneath the Incheon International Airport (IIA) located in Korea. The measured surface settlement troughs are approximated with Gaussian functions. The trough width parameters i and K of the settlement troughs produced by the first and second tunnel passings are determined, along with those for the total settlement trough. The surface settlement troughs produced by the first shield passing are reasonably represented by a symmetric Gaussian curve. The surface settlement troughs induced by the second shield tunnel display marginal asymmetric shapes at selected sections. The total settlement troughs are fitted both with a shifted symmetric Gaussian function and the superposition method utilizing an asymmetric function for the incremental trough produced by the second tunnel. It is revealed that the superposition method does not always produce better fits with the total settlement. Instead, the shifted symmetric Gaussian function is overall demonstrated to provide more favorable agreements with the recordings. Therefore, the shifted symmetric Gaussian function is recommended to be used in the design for the prediction of the settlement in clays caused by twin tunneling considering the simplicity of the procedure compared with the superposition method. The amount of increase in the width parameter K for the twin tunnel relative to that for the single tunnel is quantified, which can be used for a preliminary estimate of the surface settlement in clay induced by twin shield tunnels.

A Development of Traffic Accident Estimation Model by Random Parameter Negative Binomial Model: Focus on Multilane Rural Highway (확률모수를 이용한 교통사고예측모형 개발: 지방부 다차로 도로를 중심으로)

  • Lim, Joon Beom;Lee, Soo Beom;Kim, Joon-Ki;Kim, Jeong Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.6
    • /
    • pp.662-674
    • /
    • 2014
  • In this study, accident frequency prediction models were constructed by collecting variables such as geometric structures, safety facilities, traffic volume and weather conditions, land use, highway design-satisfaction criteria along 780km (4,372 sections) of 4 lane-highways over 8 areas. As for models, a fixed parameter model and a random parameter model were employed. In the random parameter model, some influences were reversed as the range was expressed based on specific probability in the case of no fixed coefficients. In the fixed parameter model, the influences of independent variables on accident frequency were interpreted by using one coefficient, but in the random parameter model, more various interpretations were took place. In particular, curve radius, securement of shoulder lane, vertical grade design criteria satisfaction showed both positive and negative influence, according to specific probability. This means that there could be a reverse effect depending on the behavioral characteristics of drivers and the characteristics of highway sections. Rather, they influence the increase of accident frequency through the all sections.

A Study on Effectiveness Analysis and Development of an Accident Prediction Model of Point-to-Point Speed Enforcement System (구간단속장비 설치 효과 분석 및 사고예측모형 개발)

  • Kim, Da Ye;Lee, Ho Won;Hong, Kyung Sik
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.144-152
    • /
    • 2019
  • According to the National Police Agency, point-to-point speed enforcement system is being installed and operated in 97 sections across the country. It is more effective than other enforcement systems in terms of stabilizing the traffic flow and inhibiting the kangaroo effect. But it is only 5.1% of the total enforcement systems. The National Police Agency is also aware that its operation ratio is very low and it is necessary to expand point-to-point speed enforcement system. Hence, this study aims to provide the expansion basis of the point-to-point speed enforcement operation through analysis of the quantitative effects and development the accident prediction model. Firstly, this study analyzed the effectiveness of point-to-point speed enforcement system. Naive before-after study and comparison group method(C-G Method) were used as methodologies of analyzing the effectiveness. The result of using the naive before-after study was significant. Total accidents, EPDOs and casualty crashes decreased by 42.15%, 70.64% and 45.30% respectively. And average speed and the ratio of exceeding speed limit decreased by 6.92% and 20.50%p respectively. Moreover, using the C-G method total accidents, EPDOs and casualty crashes decreased by 31.35%, 66.62% and 10.04% respectively. And average speed and the ratio of exceeding speed limit decreased by 3.49% and 56.65%p respectively. Secondly, this study developed a prediction model for the probability of casualty crash. It was dependant on factors of traffic volume, ratio of exceeding speed limit, ratio of heavy vehicle, ratio of curve section, and presence of point-to-point speed enforcement. Finally, this study selected the most danger sections to the major highway and evaluated proper installation sections to the recent installation section by applying the accident prediction model. The results of this study are expected to be useful in establishing the installation standards for the point-to-point speed enforcement system.

A Study for Distribution Methods Between Superelevation and Side Friction Factor Reflecting Ergonomic Characteristics by Increasing Design Speed (설계속도 상향에 따른 인간공학적 특성을 반영한 편경사와 횡방향마찰계수 분배방법에 관한 연구)

  • Jeong, Seungwon;Kim, Sangyoup;Choi, Jaisung;Kim, Hongjin;Jang, Taeyoun
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.103-115
    • /
    • 2013
  • PURPOSES: The purpose of this study is to develop a method for distribution between superelevation and side friction factor by increasing design speed. METHODS: First of all, a method for distribution between superelevation and side friction factor and a theory for the functional formula of side friction factor in compliance with horizontal radius applied in South Korea and the United States are considered. Especially, design speed of 140km/h and numerical value of design elements are applied to the theory for the functional formula of side friction factor in AASHTO's methods. Also, the anxiety EEG upon running speed is measured to reflect ergonomic characteristics through field experiments at seven curve sections of the West Coast Freeway, and this data is applied to graph for the functional formula of side friction factor. RESULTS : Matching side friction factor against the anxiety EEG, the results that a critical points of driver's anxiety EEG sharply increase locate under existing parabola are figured out. CONCLUSIONS : Therefore, we could get a new type of the functional formula that driver's driving comfortability is guaranteed if the existing the functional formula of side friction factor goes down under boundary of the critical points of the anxiety EEG.

Studies on T-Shaped composite columns consist of multi separate concrete-filled square tubular steel sections under eccentric axial load

  • Rong, Bin;You, Guangchao;Zhang, Ruoyu;Feng, Changxi;Liu, Rui
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.217-234
    • /
    • 2016
  • In order to investigate mechanical properties and load-bearing capacity of T-shaped Concrete-Filled Square Steel Tubular (TCFST) composite columns under eccentric axial load, three T-shaped composite columns were tested under eccentric compression. Experimental results show that failure mode of the columns under eccentric compression was bending buckling of the whole specimen, and mono column performs flexural buckling. Specimens behaved good ductility and load-bearing capacity. Nonlinear finite element analysis was also employed in this investigation. The failure mode, the load-displacement curve and the ultimate bearing capacity of the finite element analysis are in good agreement with the experimental ones. Based on eccentric compression test and parametric finite element analysis, the calculation formula for the equivalent slenderness ratio was proposed and the bearing capacity of TCFST composite columns under eccentric compression was calculated. Results of theoretical calculation, parametric finite element analysis and eccentric compression experiment accord well with each other, which indicates that the theoretical calculation method of the bearing capacity is advisable.

Optimum Blind Control to Prevent Glare Considering Potential Time Error (잠재적 시간 오차에 따른 현휘의 발생 방지를 위한 최적 블라인드 제어)

  • Seong, Yoon-Bok
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.74-86
    • /
    • 2012
  • For the improvement of environmental comfort in the buildings with the blind control, the objective of this study is to prevent the direct glare caused by the daylight inlet. During the process of solar profile prediction, time are significant factors that may cause error and glare during the blind control. This research proposes and evaluates the correction and control method to minimize prediction error. For the local areas with different longitude and local standard meridian, error occurred in the process of the time conversion from local standard time to apparent solar time. In order to correct error in time conversion, apparent solar time should be recalculated after adjusting the day of year and the equation of time. To solve the problems by the potential time errors, control method is suggested to divide the control sections using the calibrated fitting-curve and this method is verified through simulations. The proposed correction and control method, which considered potential time errors by loop lop leap years, could solve the problems about direct glare caused by daylight inlet on the work-plane according to the prediction errors of solar profile. And also these methods could maximize daylight inlet and solar heat gain, because the blocked area on windows could be minimized.