• Title/Summary/Keyword: curve sections

Search Result 202, Processing Time 0.031 seconds

Criteria of Installing Delineators Considering Human Factors (인간공학적인 시선유도시설 설치기준에 관한 연구)

  • Park, Je-Jin;Park, Tae-Hoon;Ha, Tae-Jun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.2
    • /
    • pp.100-109
    • /
    • 2008
  • Traffic accidents at night occur more than any other time because of improper road light facility and delineators. Therefore, cost-effective criteria of installing delineators are needed instead of expensive road light facility, especially, on rural road including light volume of traffic. This paper presents the criteria of installing 'Chevron Alignment Sign' considering driver's visual behavior characteristics and 'Raised Pavement Marker' considering critical encroachment angie of both straight section and curve one in order to reduce both the number of accidents on curve sections and the number of road encroachment accidents, respectively. The characteristics of visual behaviors can be expressed by visual angle involving curve radius and intersection angle. The estimated installing angles are $1^{\circ}{\sim}2.5^{\circ}$ by radii, which is based on changes in sensitivity across visual field by exogenous attention. Also, the raised pavement marker is installed every 2m, 3m, and 4m considering critical encroachment angles by radii.

  • PDF

A Study on the ALFD Design of Rolled Beams (압연형교의 ALFD설계에 관한 연구)

  • Chung, Kyung-Hee;Kim, Jin-Sung;Yang, Seung-Ie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.91-97
    • /
    • 2003
  • The maximum moment may occur at interior supports of continuous bridges. If the bigger moment is applied on them, a local yielding at interior supports may occur. They may show plastic behaviors, and the moment will be redistributed. The strength design, L.F.D., redistributes 10% of the negative moment which is obtained from the elastic analysis. However, A.L.F.D method computes the moment which is redistributed. This moment is called automoment. The moment-rotation curve is needed to find automoment. In this paper moment-rotation curve for compact sections suggested from AASHTO Guide Specifications is used to find automoment. Based on A.L.F.D. limit states specification method, a three-span continuous bridge is designed.

Receiver operating characteristic curve analysis of the timed up and go test as a predictive tool for fall risk in persons with stroke: a retrospective study

  • Lim, Seung-yeop;Lee, Byung-jun;Lee, Wan-hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.2
    • /
    • pp.54-60
    • /
    • 2018
  • Objective: Persons with chronic stroke fall more often than healthy elderly individuals. The Timed Up and Go test (TUG) is used as a fall prediction tool, but only provides a result for the total measurement time. This study aimed to determine the optimal cut-off values for each of the 6 components of the TUG. Design: Retrospective study. Methods: Thirty persons with chronic stroke participated in the study. TUG evaluation was performed using a wearable miniaturized inertial sensor. Sensitivity, specificity, and predictive values were calculated using the Receiver Operating Characteristic (ROC) curve analysis for the measured values in each section. Optimal values for fall risk classification were determined. Logistic regression analysis was used to investigate the risk of future falls based on TUG. Results: The cut-off values of the 6 sections of the TUG were determined, as follows: sit-to-stand >2.00 seconds (p<0.05), forward gait >4.68 seconds (p<0.05), mid-turn >3.82 seconds (p<0.05), return gait >4.81 seconds (p<0.05), end-turn >2.95 seconds (p<0.05), and stand-to-sit >2.13 seconds (p<0.05). The risk of falling increased by 2.278 times when the mid-turn value was >3.82 seconds (p<0.05). Conclusions: The risk of falls increased by 2.28 times when the value of the mid-turn interval exceeded 3.82 seconds. Therefore, when interpreting TUG results, the predictive accuracy for falls will be higher when the measurement time for each section is analyzed, together with the total time for TUG.

Strength and Dynamic Performance Analysis for Tilting Train Wheel (틸팅차량용 차륜의 구조 강도 및 동적 성능 해석)

  • Hur, Hyun-Moo;Kwon, Sung-Tae;Seo, Jung-Won;Kwon, Seok-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.85-92
    • /
    • 2006
  • For the improvement of a conventional railway speed, tilting train(Tilting Train express) is under the development aiming for a maximum speed 180km/h. Compared to the existing conventional rolling-stock, tilting train could take an advantage of speed improvement about $20{\sim}30%$ on curve sections due to the improvement of cowing performance. However, this speed increasement creates a severe load at wheels, thus it is necessary to study the safety of wheel for tilting train preferentially. On the other hand, it is under consideration that the wheel for conventional railway rolling-stock at speeds of 150km/h will be applied to tilting train at speeds of 180km/h. In this paper, we have studied the strength of wheel structure, the geometrical contact characteristics, and the dynamic performance of wheel to evaluate the safety of wheel for tilting train.

Foam Filling Effect on Bending Collapse Characteristics for Member Section Type (부재단면 형상에 따른 부재 굽힘붕괴 특성의 폼 충진 효과)

  • Lee, Il-Seok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.41-49
    • /
    • 2007
  • More diversified and strengthened safety regulations require higher safety vehicle with less weight. The structural foam can play a role for restraining section distortion of main body members undergoing bending collapse at vehicle crash. In this study, using structural foam modeling technology, validated in previous work, the bending collapse characteristics were evaluated for two types of circular and actual vehicle body frame sections. With changing the foam filling method, outer panel thickness and section shape, load carrying capability and absorbed energy were observed. The results indicate valuable design strategy for effectively elevating bending collapse performance of body members with foam filled.

Multi-spring model for 3-dimensional analysis of RC members

  • Li, Kang-Ning;Otani, Shunsuke
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.17-30
    • /
    • 1993
  • A practical multi-spring model is proposed for a nonlinear analysis of reinforced concrete members, especially columns, taking into account the interaction of axial load and bi-directional bending moment. The parameters of the model are determined on the basis of material properties and section geometry. The axial force-moment interaction curve of reinforced concrete sections predicted by the model was shown to agree well with those obtained by the flexural analysis utilizing realistic stress-strain relations of materials. The reliability of the model was also examined with respect to the test of reinforced concrete columns subjected to varying axial load and bi-directional lateral load reversals. The analytical results agreed well with the experiment.

Finite element modeling of rolled steel shapes subjected to weak axis bending

  • Saliba, Najib G.;Tawk, Issam;Gergess, Antoine N.
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.161-173
    • /
    • 2018
  • Point bending is often used for cambering and curving structural steel girders. An analytical solution, applicable in the elasto-plastic range only, that relates applied loads to the desired curve was recently developed for inducing horizontal curves using four-point bending. This solution does not account for initial residual stresses and geometric imperfections built-in hot-rolled sections. This paper presents results from a full-scale test on a hot-rolled steel section curved using four-point bending. In parallel, a numerical analysis, accounting for both initial geometric imperfections and initial residual stresses, was carried out. The models were validated against the experimental results and a good agreement for lateral offset and for strain in the elasto-plastic and post-plastic ranges was achieved. The results show that the effect of initial residual stresses on deformation and strain is minimal. Finally, residual stresses due to cold bending calculated from the numerical analysis were assessed and a revised stress value for the service load design of the curved girder is proposed.

An Analytical Study on Ductility of Reinforced Concrete Columns under Tension Controlled Region (인장지배영역에서의 철근콘크리드 기둥의 연성에 관한 해석적 연구)

  • 손혁수;김준범;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.527-532
    • /
    • 1997
  • Design strength of structural members could be determined by applying a strength reduction factor to nominal strength. At the beginning point of the transition region for the strength reduction factor, P=0.1$\sigma$$_{ck}A_g$, only sectional area and concrete strength are adopted as the variables of P=0.1$\sigma$$_{ck}A_g$. Therefore, P=0.1$\sigma$$_{ck}A_g$ is the empirically adopted which does not consider steel ratio, steel yielding stress, and steel arrangement. So, this research was perpormed the computer program for the analysis of axial force-moment-curvature relationship of reinforced concrete columns by sectional behaviour nonlinear analysis using a concrete compressive stress-strain curve, in order to investigate the ductility of reinforced concrete columns. As a result, ductility indicies of axial force, P=0.1$\sigma$$_{ck}A_g$, represented the lack of consistency of the indicies value for the various sections.

  • PDF

Evaluation of human vibration of high speed train using ISO 2631 (ISO 2631에 따른 국내 고속철도차량 인체진동 평가)

  • Kim, Ji Man;Park, Jin Han;Ahn, Se Jin;Jeong, Weui Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.131-133
    • /
    • 2014
  • Vibration exposure of the KTX and ITX-saemaeulho on the Gyung-Bu line was evaluated and compared in terms of human health based on ISO 2631. RMS value of KTX was calculated as much lower than ITX-saemaeulho in all travel sections. When VDV result of the two trains drived return travel from Seoul to Busan in single day is compared on the health guidance caution zone of ISO 2631, vibration exposure of KTX is safer than ITX-saemaeulho which is marginally under the caution line.

  • PDF

Numerical Study on the Performance of PEMFC with Various Cross Sections of Channel (채널 단면형상 변화에 따른 PEMFC 성능 수치 연구)

  • Choi, Chi-Hwan;Moon, Chung-Eun;Lee, Kyu-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.186-192
    • /
    • 2005
  • A numerical study on the performance of a PEMFC was performed by using a CFD-ACE+commercial program. The effects of width, hight and shape of channel cross section and mass flow rate were investigated. In order to check the validity of the simulation, comparisons were carried out between predictions and experimental data available in the literature and shows the reasonable agreement. It is found that only the width of channel is strongly related to the performance of a PEMFC, while other factors have no marked effects.

  • PDF