• Title/Summary/Keyword: curvature guidance

Search Result 16, Processing Time 0.029 seconds

A linearized curvature guidance algorithm for a passive homing missile (수동 유도 미사일 제어를 위한 선형화된 곡률 유도 알고리즘)

  • 신용준;김경근;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.245-248
    • /
    • 1996
  • This paper suggests a new concept for missile guidance control, called linearized common curvature guidance law that enhances the probability to kill a target. The proposed guidance system is composed of two switching modes; one for the midcourse guidance and the other for the terminal guidance, which is switched by a specified critical value (.epsilon.). And the system and the commands are formulated and its simulations are provided in comparison with the conventional commanded line of sight guidance algorithm. Miss distance and angle of attack are denoted as performance of parameters. This new concept, common curvature guidance algorithm, revises the navigation guidance and accompanies, various considerations.

  • PDF

LOS Analysis Algorithm for Mid-range Guided Weapon System (중거리지대공 유도무기체계 적용을 위한 가시선 분석 알고리듬 연구)

  • Lee, Han-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.642-649
    • /
    • 2010
  • LOS analysis is used for optimal deployment of mid-range guided weapon system or system engagement effectiveness simulation. Comparing to real-world, LOS analysis includes error sources such as coarse terrain data resolution, refraction of radio waves, and several ideal assumptions. In this research, exact LOS algorithm under assumption of constant earth curvature and error analysis of that is investigated. It proved that LOS algorithm under assumption of constant earth curvature has negligible error in mid-range guidance weapon system's scope.

Controll Characteristics of Electromagnetically Levitated Rigid Body Bogie-Truck and Twist Response Type of Bogie-Truck (강휴태차(剛休台車)와 비틀림 응답형태차(答型台車)의 제어특성(制御特性))

  • Kwon, B.I.;Masada, E.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.142-145
    • /
    • 1989
  • The electromagnetic suspension system, which is a kind of magnetic levitation, can be categorized into two groups; separate lift & guidance system and combined lift & guidance system. This paper deals with the latter system, in which lift and guidance forces are generated by a pair of staggered magnets with the inverted U- shaped rail. In this work, a rigid body bogie-truck and a twist response type of bogie-truck, which are constructed by two magnetic wheels consist of two staggered magnet pairs, are modeled, and curvature running characteristics of both types obtained by simulation are presented. Simulation result showed that curvature running characteristics of twist response type of bogie-truck is better than that of rigid body bogie-truck.

  • PDF

Autonomous-guided orchard sprayer using overhead guidance rail (요버헤드 가이던스 레일 추종 방식에 의한 과수방제기의 무인 주행)

  • Shin, B.S.;Kim, S.H.;Park, J.U.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.6 s.119
    • /
    • pp.489-499
    • /
    • 2006
  • Since the application of chemicals in confined spaces under the canopy of an orchard is hazardous work, it is needed to develop an autonomous guidance system for an orchard sprayer. The autonomous guidance system developed in this research could steer the vehicle by tracking an overhead guidance rail, which was installed on an existing frame structure. The autonomous guidance system consisted of an 80196 kc microprocessor, an inclinometer, two interface circuits of actuators for steering and ground speed control, and a fuzzy control algorithm. In addition, overhead guidance rails for both straight and curved paths were devised, and a trolley was designed to move smoothly along the overhead guidance rails. Evaluation tests showed that the experimental vehicle could travel along the desired path at a ground speed of 30 $\sim$ 50 cm/s with a RMS error of 5 cm and maximum deviation of less than 12 cm. Even when the vehicle started with an initial offset or a deflected heading angle, it could move quickly to track the desired path after traveling 2 $\sim$ 3 m. The vehicle could also complete turns with a curvature of 1 m. However, at a ground speed of 50 cm/s, the vehicle tended to over-steer, resulting in a zigzag motion along the straight path, and tended to turn outward from the projected line of the guidance rail.

Posture guidance system using 3-axis accelerometer for scoliosis patient (3축 가속도 센서를 활용한 척추 측만증 환자용 자세 교정 유도 장치)

  • An, Y.S.;Kim, K.S.;Song, C.G.
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.396-398
    • /
    • 2009
  • Scoliosis is a three-dimensional deformity caused by lateral curvature of the spine. The existing braces used to correct the posture were some drawbacks such as inconvenience, tightness as well as unfitness to wear. In this study, we devised a posture guidance system in order to monitor a posture continuously and lead to pose correctly and a new method fur measuring a Cobb's angle value in third dimension based on two 3-axis accelerometers. As a result, the correlation coefficients between desired and measured angles were and standard error between desired and measured angles were 0.99, 1.32(x-axis), 0.99 and 1.10(y-axis), respectively. The devised system showed good potential for the optimal posture guide and an early detection of scoliosis.

  • PDF

Effect of boundary mobility on nonlinear pulsatile-flow induced dynamic instability of FG pipes

  • Zhoumi Wang;Yiru Ren;Qingchun Meng
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.751-764
    • /
    • 2023
  • In practical engineering such as aerial refueling pipes, the boundary of the fluid-conveying pipe is difficult to be completely immovable. Pipes under movable and immovable boundaries are controlled by different dominant nonlinear factors, where the boundary mobility will affect the nonlinear dynamic characteristics, which should be focused on for adopting different strategies for vibration suppression and control. The nonlinear dynamic instability characteristics of functionally graded fluid-conveying pipes lying on a viscoelastic foundation under movable and immovable boundary conditions are systematically studied for the first time. Nonlinear factors involving nonlinear inertia and nonlinear curvature for pipes with a movable boundary as well as tensile hardening and nonlinear curvature for pipes with an immovable boundary are comprehensively considered during the derivation of the governing equations of the principal parametric resonance. The stability boundary and amplitude-frequency bifurcation diagrams are obtained by employing the two-step perturbation- incremental harmonic balance method (TSP-IHBM). Results show that the movability of the boundary of the pipe has a great influence on the vibration amplitude, bifurcation topology, and the physical meanings of the stability boundary due to different dominant nonlinear factors. This research has guidance significance for nonlinear dynamic design of fluid-conveying pipe with avoiding in the instability regions.

Correlation between sagittal condylar guidance angles obtained using radiographic and protrusive occlusal record methods

  • Kwon, Oh-Kyun;Yang, Seung-Won;Kim, Jee-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.302-307
    • /
    • 2017
  • PURPOSE. This study compared the SCGAs measured in three types of radiographic images (panoramic, CBCT panoramic-section, and CBCT cross-section images) with values measured using the protrusive occlusal record. MATERIALS AND METHODS. SCGAs were measured in 20 patients on a semi-adjustable articulator using the protrusive interocclusal record. Panoramic and CBCT images were obtained. SCGAs were measured on CBCT images in panoramic and cross sections. In all of the radiographic images, SCGAs were measured using the Frankfort horizontal reference line and the mean curvature line. The most-superior and most-inferior points of the curvatures were identified to determine the mean curvature line. Each measurement was performed twice by two operators independently. The data were analyzed by the t-test, Pearson's correlation test, and Cronbach's ${\alpha}$ using SPSS (${\alpha}=.05$). RESULTS. The mean right and left SCGAs were as follows: protrusive occlusal record (30.1 and 30.2 degrees, respectively), panoramic (38.9 and 38.7 degrees), CBCT panoramic sections (35.4 and 36.8 degrees), and CBCT cross sections (35.3 and 36.1 degrees). The SCGAs differed significantly among the groups. The Pearson coefficients for the correlations with the protrusive occlusal record measurements on the left and right sides were as follows: panoramic (0.834 and 0.791, respectively), CBCT panoramic-section (0.918 and 0.837), and CBCT cross-section (0.918 and 0.845) images. CONCLUSION. Strong correlations were found between SCGAs obtained using radiographic images and the protrusive occlusal record.

An Analysis of Dent Formation by Dynamic Finite Element Method (동적 유한요소해석을 이용한 Dent 발생에 대한 연구)

  • Cha, Sung-Hoon;Shin, Myoung-Soo;Kim, Jong-Bong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.58-65
    • /
    • 2010
  • For the improvement of fuel consumption, the study on the use of lightweight material or thinner sheet have been carried out in automotive industry. With the need for the use of thinner sheet, the dent resistance became one of the major concern in th design of exterior panels in automotive industry. Many studies have been carried out for the dent resistance by experiment or quasi-static numerical simulation. In this study, the dent formation behavior is investigated by dynamic finite element analysis using ABAQUS. Dent formation may be affected by many factors such as sheet thickness, material properties, pre-strain, and sheet curvature. The effect of these factors on dent resistance is investigated. From the analysis following three conclusions are derived. First, dent resistance become hard as the sheet curvature radius increases. Second, dynamic dent resistance is mainly affected by bending stress rather than tensile stress. Third, the pre-strain itself do not give any guidance for dynamic dent resistance and dynamic dent resistance have to be decided considering the strain hardening and thickness reduction together. The results are considered to be reliable and useful to improve the dent damage of automotive panels.

Correct Posture Guidance System using 3-axis Acceleration Sensor for Scoliosis Patient (3축 가속도 센서를 이용한 자세 교정 유도 시스템)

  • An, Yang-Soo;Kim, Keo-Sik;Seo, Jeong-Hwan;Song, Chul-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.220-224
    • /
    • 2010
  • In this study, we designed a device for consecutively observing position, utilizing 3-axises acceleration sensor. This method offer to check his or her wrong position and developed could to help derived a position appliance. And, we developed a Cobb's angle value in three dimensional using 3-axises acceleration sensor. A proposed device with integrated accelerometers, which can detect postural changes in terms of curvature variation of the spine in the sagittal and coronal planes, has been developed with intention to facilitate posture training. The proposed device was evaluated with 3 normal subjects daily activities. We evaluated the performance of our designed device as calculating the correlation coefficients and mean errors between the angle measured by an electro-goniometer and that estimated by a gravity accelerometer and verified the accuracy and sensitivity. The results showed that the angle obtained from the proposed device revealed a linear characteristic at the range of $\pm60^{\circ}$(correlation coefficient 0.99, error range $\pm2^{\circ}$). We demonstrated that our device could detect the changes of the motion in upper trunk accurately. Also, our device showed good potential for treatment of the patients with scoliosis and prevention of the unbalance position during a daily life.

Controller for Single Line Tracking Autonomous Guidance Vehicle Using Machine Vision

  • Shin, Beom-Soo;Choi, Young-Dae;Ying, Yibin
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.47-53
    • /
    • 2005
  • AMachine vision is a promising tool for the autonomous guidance of farm machinery. Conventional CCD camera for the machine vision needs a desktop PC to install a frame grabber, however, a web camera is ready to use when plugged in the USB port. A web camera with a notebook PC can replace existing camera system. Autonomous steering control system of this research was intended to be used for combine harvester. If the web camera can recognize cut/uncut edge of crop, which will be the reference for steering control, then the position of the machine can be determined in terms of lateral offset and heading angle. In this research, a white line was used as a cut/uncut edge of crop for steering control. Image processing algorithm including capturing image in the web camera was developed to determine the desired travel path. An experimental vehicle was constructed to evaluate the system performance. Since the vehicle adopted differential drive steering mechanism, it is steered by the difference of rotation speed between left and right wheels. According to the position of vehicle, the steering algorithm was developed as well. Evaluation tests showed that the experimental vehicle could travel within an RMS error of 0.8cm along the desired path at the ground speed of $9\sim41cm/s$. Even when the vehicle started with initial offsets or tilted heading angle, it could move quickly to track the desired path after traveling $1.52\sim3.5m$. For turning section, i.e., the curved path with curvature of 3 m, the vehicle completed its turning securely.

  • PDF