• Title/Summary/Keyword: curvature effect

Search Result 650, Processing Time 0.024 seconds

A Study on Developing Fold-Over Designs with Four-Level Quantitative Factors (4-수준 계량인자가 포함된 반사계획에 관한 연구)

  • Choi, Kiew-Phil;Byun, Jai-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.3
    • /
    • pp.283-290
    • /
    • 2002
  • Two-level fractional factorial designs are widely used when many factors are considered. When two-level fractional factorial designs are used, some effects are confounded with each other. To break the confounding between effects, we can use fractional factorial designs, called fold-over designs, in which certain signs in the design generators are switched. In this paper, optimal fold-over designs with four-level quantitative and two-level factors are presented for (1) the initial designs without curvature effect and (2) those with curvature effect. Optimal fold-over design tables are provided for 8-run, 16-run, and 32-run experiments.

Effect of Radius of Curvature of a Corona Needle on Ionic Wind Generation (방전 침전극의 곡률반경이 이온풍 발생에 미치는 영향)

  • Hwang, Deok-Hyun;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.604-608
    • /
    • 2010
  • An electric fan for cooling high density electronic devices is limited and operated in very low efficiency. The corona discharge is utilized as the driving mechanism for an ionic gas pump, which allows for air flow control and generation with low noise and no moving parts. These ideal characteristics of ionic pump give rise to variety applications. However, all of these applications would benefit from maximizing the flow velocities and yields of the ionic pump. In this study, a needle-mesh type ionic pump has been investigated by focusing on the radius of curvature of corona needle points elevating the ionic wind velocity and efficiency. It is found that the radius of curvature of the corona discharge needle point influences significantly to produce the ionic wind and efficiency. As a result, an elevated ionic wind velocity and increased ionic wind generation yield can be obtained by optimized the radius of curvature of the corona needle electrode.

The Effect of Minimum Energy Path Curvature on the Dynamic Threshold for Collision-induced Dissociation

  • Kihyung Song
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.529-536
    • /
    • 1991
  • In this paper, the question whether the curvature of the minimum energy path can affect the dynamic threshold was tested using the boundary trajectory method developed by Chesnavich and coworkers. For nonreactive system, the MO EXP model potential surface was used with modified equilibrium distance to control the curvature. The results showed that there is no relation between the curvature and the dynamic threshold. In order to study the reactive system, a generalization of the boundary trajectory method was achieved to apply on the nonsymmetric system. We have found no correspondence between the curvature and the dynamic threshold of the system. It was also shown that the fate of the trajectories strongly depends on the shape of potential surface around the turning points along the symmetric stretch line.

Effect of combined application of manipulation and stabilization exercises on pain and spinal curvature in patients with chronic back Pain (도수 교정과 안정화 운동 복합적용이 만성 허리통증 환자의 통증과 척추 만곡도에 미치는 영향)

  • Jang, Jae Sun;Kim, Yong Nam
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.2
    • /
    • pp.38-47
    • /
    • 2022
  • Background: The purpose of this study was to investigate the effect of the combined application of manipulation and stabilization exercises on pain and spinal curvature in patients with chronic back pain. Design: Randomized controlled trial Methods: The research subjects included 24 women in their 40s and 50s who have chronic back pain. The sample was evenly divided into an experimental group, which received the combined application of manipulation and stabilization exercises, and a control group, which received stabilization exercises only. The 30-minute intervention was applied five times a week for eight weeks. A bivariate repeated measures analysis of variances was conducted to identify the differences between the two groups before the experiment, after the fourth week, and at the end of the eight-week experiment. The level of statistical significance was set at.05. This analysis examined the within-group changes and the between-group changes using a paired t-test and an independent t-test, respectively. Results: Changes in pain differed significantly depending on the time of the measurement, the interaction between the time of the measurement and each group, and between the two groups (p<.05). Changes in the curvature of the bones of the neck, the bones of the back, and the lumbar vertebrae differed significantly depending on the time of the measurement and the interaction between the time of the measurement and each group (p<.05). Conclusion: The combined application of manipulation and stabilization exercises demonstrated a positive effect on changes in pain and spinal curvature, and the method is expected to be a useful intervention for reducing pain and improving spinal curvature in patients with back pain.

Effect of Beach Curvature on Wave Fields in Coastal Area with Submerged Breakwaters (잠제 설치 연안역의 파동장에 미치는 해안곡률의 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong;Yeom, Gyeong-Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.463-472
    • /
    • 2009
  • The aim of this study is to examine the effect of beach curvature on wave fields in coastal area with Submerged Breakwaters using the 3D numerical model that is able to simulate directly interaction of WAve Structure Sandy beach (LES-WASS-3D). At first, the adopted model was validated through the comparison with an existing experimental data and showed fairly nice agreement. And then, the numerical simulations have been performed to investigate the effect of according to the variation of beach curvature. Based on the numerical results, the wave height, mean surface elevation, mean flow around submerged breakwaters and longshore distributions of run-up height have been discussed in relation to the variation of beach curvature.

Curvature ductility of confined HSC beams

  • Bouzid Haytham;Idriss Rouaz;Sahnoune Ahmed;Benferhat Rabia;Tahar Hassaine Daouadji
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.579-588
    • /
    • 2024
  • The present paper investigates the curvature ductility of confined reinforced concrete (RC) beams with normal (NSC) and high strength concrete (HSC). For the purpose of predicting the curvature ductility factor, an analytical model was developed based on the equilibrium of internal forces of confined concrete and reinforcement. In this context, the curvatures were calculated at first yielding of tension reinforcement and at ultimate when the confined concrete strain reaches the ultimate value. To best simulate the situation of confined RC beams in flexure, a modified version of an ancient confined concrete model was adopted for this study. In order to show the accuracy of the proposed model, an experimental database was collected from the literature. The statistical comparison between experimental and predicted results showed that the proposed model has a good performance. Then, the data generated from the validated theoretical model were used to train the artificial neural network (ANN) prediction model. The R2 values for theoretical and experimental results are equal to 0.98 and 0.95, respectively which proves the high performance of the ANN model. Finally, a parametric study was implemented to analyze the effect of different parameters on the curvature ductility factor using theoretical and ANN models. The results are similar to those extracted from experiments, where the concrete strength, the compression reinforcement ratio, the yield strength, and the volumetric ratio of transverse reinforcement have a positive effect. In contrast, the ratio and the yield strength of tension reinforcement have a negative effect.

Effect of Confined High-Strength Concrete Columns

  • Van, Kyung-Oh;Yun, Hyun-Do;Hwang, Sun-Kyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.747-758
    • /
    • 2003
  • The moment-curvature envelope describes the changes in the flexural capacity with deformation during a nonlinear analysis. Therefore, the moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. The moments and curvatures associated with increasing flexural deformations of the column may be computed for various column axial loads by incrementing the curvature and satisfying the requirements of strain compatibility and equilibrium of forces. Clearly it is important to have accurate information concerning the complete stress-strain curve of confined high-strength concrete in order to conduct reliable moment-curvature analysis that assesses the ductility available from high-strength concrete columns. However, it is not easy to explicitly characterize the mechanical behavior of confined high-strength concrete because of various parameter values, such as the confinement type of rectilinear ties, the compressive strength of concrete, the volumetric ratic and strength of rectangular ties. So a stress-strain model is developed which can simulate complete inelastic moment-curvature relations of high-strength concrete columns.

Study on Relationship of Flexural Moment-Curvature Based on Bond Property of Reinforced Concrete Member (철근콘크리트 부재의 부착특성을 고려한 휨모멘트-곡률 관계에 관한연구)

  • 장일영
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.97-106
    • /
    • 1991
  • The object of this study is to propose the Flexural moment-curvature relationship based on the bond property between concrete and steel for noncracking zone, to evaluate the flexural displacement of reinforced concrete member. The bond-slip relationship and the strain hardening effect of steel were taken into consideration in order to evaluate the spacing of the cracks and the curvature distribution. Calculated curvature distribution along the longitudinal axis was transformed into equivalent curvature distribution. The flexural displacement was calculated by means of double integrals of the equivalent curvature. Furthermore, 34 beams were tested in order to verify the proposed procedure Calculated values agreed well with the experimental data, and so it is pointed out that proposed method is widely acceptable for the practical evaluation of flexural displacement of reinforced concrete member.

The Case Report of Chuna Treatment using Drop Table on Neck Pain Patients with Kyphotic Cervical Curvature (경추 후만에 대한 낙차 교정기법을 이용한 추나치료 치험례)

  • Park, Jang-Woo;Hwang, Jae-Pil;Kim, Min-Kyun;Oh, Min-Seok;Heo, Dong-Seok
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.1 no.2
    • /
    • pp.111-123
    • /
    • 2006
  • Objectives: This study is performed to evaluate the clinical effect of chuna therapy on the neck pain associated with kyphotic cervical curvature. Methods: This study carried out on three patients with neck pain & kyphotic cervical curvature who have received treatment in Depar1ment of Oriental Rehabilitation Medicine, Daejon Oriental Hospital of Daejon University from 28th July 2006 to 3th November 2006. Pre and post treatment, We evaluated the cervical angle, Jackson's angle, Jochumsen method, Ishihara index, VAS and effective score of treatment. Results & Conclusions: Two patients who received Chuna treatment recovered cervical curvature and improved neck pain. But One patient who dosen't received Chuna treatment was no improvement in cervical curvature & neck pain.

  • PDF