• Title/Summary/Keyword: curvature distribution

Search Result 306, Processing Time 0.031 seconds

SOME RESULTS ON INVARIANT SUBMANIFOLDS OF AN ALMOST KENMOTSU (𝜅, 𝜇, 𝜈)-SPACE

  • ATCEKEN, Mehmet;YUCA, Gulsum
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.655-665
    • /
    • 2021
  • In the present paper, we study the geometric properties of the invariant submanifold of an almost Kenmotsu structure whose Riemannian curvature tensor has (𝜅, 𝜇, 𝜈)-nullity distribution. In this connection, the necessary and sufficient conditions are investigated for an invariant submanifold of an almost Kenmotsu (𝜅, 𝜇, 𝜈)-space to be totally geodesic under the behavior of functions 𝜅, 𝜇, and 𝜈.

SHARP INEQUALITIES INVOLVING THE CHEN-RICCI INEQUALITY FOR SLANT RIEMANNIAN SUBMERSIONS

  • Mehmet Akif Akyol;Nergiz (Onen) Poyraz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1155-1179
    • /
    • 2023
  • Main objective of the present paper is to establish Chen inequalities for slant Riemannian submersions in contact geometry. In this manner, we give some examples for slant Riemannian submersions and also investigate some curvature relations between the total space, the base space and fibers. Moreover, we establish Chen-Ricci inequalities on the vertical and the horizontal distributions for slant Riemannian submersions from Sasakian space forms.

Three Dimensional Curvature Analysis of Femoral Shaft Bowing based on CT Images (CT 영상을 이용한 대퇴체부 휨의 3차원적 곡률 분석)

  • Lim, Ki Seon;Oh, Wang Kyun;Lee, Tae Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.5
    • /
    • pp.313-320
    • /
    • 2013
  • For some patients with joint illnesses such as rheumarthritis or varus deformity, the total knee arthroplasty (TKA) procedures are performed. However, when inserting metal cutting guide for the procedures, due to the femoral shaft bowing, complications such as the cortex of the femoral shaft damages or secondary fractures can be caused. If the central coordinate value of the femoral shaft is known, the metal cutting guide could be inserted into the anatomical center, so such complications can be prevented. In this study, CT images of femoral shafts of 10 individuals in the experiment group who are in need of receiving the total knee arthroplasty procedures and those of 10 individuals in the control group without illness in the femoral shaft have been utilized to locate the 3-dimensional coordinate values. Then, Matlab was utilized to identify the central coordinate value in order to obtain a graph reflecting the anatomical shapes as well as to acquire the 3-dimensional radial curvature values by section. As a result, the average curvature range and standard deviation of femoral shafts of the experiment group was determined to be $758.15{\pm}206.3mm$ whereas the that of the control group was determined to be $1672.97{\pm}395.6mm$. The statistical significance of the measured results was verified through f-distribution analysis. Based on these results, it was verified that the level of curvature of the femoral shaft of the experiment group was higher. If the anatomical central points are located and analyzed using this methodology, it would be helpful in performing orthopedic operations such as the total knee arthroplasty.

Evaluations of Magnetic Abrasive Polishing and Distribution of Magnetic Flux Density on the Curvature of Non-Ferrous Material (곡면 자기연마에서의 자기력 형성과 가공특성에 관한 연구)

  • Kim, Sang-Oh;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.259-264
    • /
    • 2012
  • Automatic magnetic abrasive polishing (MAP), which can be applied after machining of a mold on a machine tool without unloading, is very effective for finishing a free-form surface such as a complicated injection mold. This study aimed to improve the efficiency of MAP of a non-ferrous mold surface. The magnetic array table and control of the electromagnet polarity were applied in the MAP of a free-form surface. In this study, first, the magnetic flux density on the mold surface was simulated to determine the optimal conditions for the polarity array. Then, the MAP efficiency for polishing a non-ferrous mold surface was estimated in terms of the change in the radius of curvature and the magnetic flux density. The most improved surface roughness was observed not only in the upward tool path but also in the working area of larger magnetic flux density.

Effect of Scapular Brace on the Pulmonary Function and Foot Pressure of Elderly Women with Forward Head Posture

  • Kim, Eun-Kyung;Lee, Dong-Kyu
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.4
    • /
    • pp.141-145
    • /
    • 2018
  • Purpose: Changes in the curvature of the vertebral columns of elderly women with increasing age causes various side effects and disorders. Therefore, this study was conducted to evaluate the effectiveness of the 8-figure scapular brace to improve pulmonary function and balance ability based on lung capacity and foot pressure by increasing the vertebral curvature. Methods: Seventeen elderly women with a forward head posture were selected. Women were asked to wear the 8-figure scapular brace and the forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) were measured, as were changes in foot pressure. Measurements were conducted three times each and the mean values were used for subsequent analyses. For static evaluation, we used the paired t-test to identify differences between pre and post values. Results: There was no significant difference in FEV1 and FVC before and after use of the brace (p>0.05); however, there was a significant decrease in forefoot pressure and an increase in rearfoot pressure following application of the brace (p<0.05). Conclusion: Application of the 8-figure scapular brace to correct vertebral curvature in elderly women influenced pressure distribution change from immediate effect body arrange of cervical and thoracic. However, wearing the 8-figure scapular brace may interfere with expansion of the chest and therefore respiratory muscle activity. Accordingly, it is necessary to apply appropriate treatment when wearing a scapular brace and to allow a sufficient intervention period while also providing therapeutic interventions such as posture correction or respiration training.

A Study on the Curvature Characteristic of the Incomplete Composite Girder Considering the Deflection Effect (처짐을 고려한 불완전합성형의 곡률특성에 관한 연구)

  • Yong, Hwan Sun;Kim, Yun Hwan;Park, Yong Chan;Song, Su Yeop
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.803-811
    • /
    • 2002
  • Current composite steel and concrete bridges are designed using full-interaction theory assuming there is no relative slip, between the steel and concrete components along their interface, because of the complexities of partial-interaction analysis techniques. However, in the assessment of existing composite bridges this simplification may not be warranted as it is often necesary to extract the correct capacity and endurance from the structure. This may only be achieved using partial-interaction theory which tuly reflects the behaviour of the structure. In this paper, Parametric analyses have been carried out in order to confirm the partial-interaction curvatures with deflection effect using the finite element method. Therefore, the model is considered for simply supported steel and concrete composite bridges with a uniform distribution of connectors subjected to a single concentrated load. For the case studies, this study applicate a parameters such as the number and space of stud shear connector and elastic modulus of concrete slabs. From this study, it is known that partial-interaction effect was in the increase to the increasing the deflection of composite bridges, and stiffness and strength of slab concrete considering the occurrence of crack effect seriously to the partial-interaction behavior.

Study on the Profile of Body Spring in the Flat Type Wiper Blade for an Intended Contact Pressure Distribution (임의의 누름압 분포를 나타내는 플랫형 블레이드 스프링 레일의 곡면 형상)

  • Song, Kyoungjoon;Lee, Hyeongill
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • An analytical procedure to determine a proper profile of the spring rail that generates intended contact pressure distribution in the flat wiper blade is introduced. The flat wiper blade is one piece blade and subjected to pressing force at a center point. In this type of blade, contact pressure distribution in the tip of rubber strip is determined by the pressing force, the initial profile of the blade before contact and bending stiffness of the blade. Experimentally obtained bending stiffness of the blade assembly is almost identical to that of the spring rail. Principle of reciprocity has been used to define the initial profile of spring rail from the deformed profile that is assumed to be identical to the windshield glass profile. The procedure has been verified experimentally by measuring the contact pressure of the blade assembled with the spring rail designed by the procedure proposed here. Measured contact pressure distributions of the blades show good agreements with intended distributions over the entire blade span. Consequently, it can be concluded that proposed procedure has relatively good accuracy in developing the spring rail for flat blade having a specific contact pressure distribution.

Prediction of Curvature Effects on the Electromagnetic Flowmeter Characteristics with Numerical Simulation (Laminar flow) (곡관의 곡률에 따른 전자기유량계 설치효과의 수치모사에 의한 특성 예측(충류))

  • Lim, Ki Won;Choi, Sang Kyu;Chung, Myung Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1453-1463
    • /
    • 1999
  • An electromagnetic flowmeter, based on a magnetic induction principle; provides an obstructionless flowmeter that essentially averages the velocity distribution over the pipe cross-sectional area. To predict the installation effects, the flowmeter installed near $90^{\circ}$ elbow is simulated by using a commercial code FLUENT(ver. 4.48) for the laminar flow field and a code developed through this study for magnetic field. The installation effects of the flowmeter are estimated by varying a number of the dependent parameters such as the radius of the elbow(Rc=1D, 1.5D, 2D, 3D), the location, Reynolds number and the direction of electrodes plane(${\varphi}$). It was found that all these factors affect the performance of the electromagnetic flowmeter significantly. The longer installation distance from the elbow is not always optimal to minimize the error, and also there exists an optimal location to install the EMF for a minimum error. Especially the flow signal with the electrodes plane direction of ${\varphi}=45^{\circ}$ is shown to yield smallest measurement error regardless of the Reynolds number and the curvature of elbow.

Force density ratios of flexible borders to membrane in tension fabric structures

  • Asadi, H.;Hariri-Ardebili, M.A.;Mirtaheri, M.;Zandi, A.P.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.555-563
    • /
    • 2018
  • Architectural fabrics membranes have not only the structural performance but also act as an efficient cladding to cover large areas. Because of the direct relationship between form and force distribution in tension membrane structures, form-finding procedure is an important issue. Ideally, once the optimal form is found, a uniform pre-stressing is applied to the fabric which takes the form of a minimal surface. The force density method is one of the most efficient computational form-finding techniques to solve the initial equilibrium equations. In this method, the force density ratios of the borders to the membrane is the main parameter for shape-finding. In fact, the shape is evolved and improved with the help of the stress state that is combined with the desired boundary conditions. This paper is evaluated the optimum amount of this ratio considering the curvature of the flexible boarders for structural configurations, i.e., hypar and conic membranes. Results of this study can be used (in the absence of the guidelines) for the fast and optimal design of fabric structures.

Development and Application of the Computer Program for the Performance and Noise Prediction of Axial Flow Fan (축류형 송풍기의 성능 및 소음 예측을 위한 전산 프로그램의 개발 및 적용)

  • Chung, Dong-Gyu;Hong, Soon-Seong;Lee, Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.31-40
    • /
    • 2000
  • A computer program is developed for the prediction of the aerodynamic performance and the noise characteristics in the basic design step of axial flow fan. The flow field and the performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted performances, sound pressure level and noise directivity patterns of fan by the present method are favorably compared with the test data of actual fan. Furthermore, the present method is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level.

  • PDF