• Title/Summary/Keyword: current-voltage (I-V)

Search Result 951, Processing Time 0.024 seconds

Electrical Properties of CuPc FET with Different Substrate Temperature

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.170-173
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated the organic field-effect transistor based a copper phthalocyanine (CuPc) as an active layer on the silicon substrate. The CuPc FET device was made a topcontact type and the substrate temperature was room temperature and $150^{\circ}C$. The CuPc thickness was 40 nm, and the channel length was $50{\mu}m$, channel width was 3 mm. We observed the typical current-voltage (I-V) characteristics and capacitance-voltage (C-V) in CuPc FET and we calculated the effective mobility with each device. Also, we observed the AFM images with different substrate temperature.

The study on electrical conduction mechanism of plasma-polymerized methyl methacrylate (PPMMA) (플라즈마중합 PPMMA의 전기전도 기구에 관한 연구)

  • Park, Jae-Youn;Park, Kwang-Heun;Han, Sang-Ock;Lee, Deok-Chool
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.283-285
    • /
    • 1987
  • Transient conduction current (I - t characteristics) were measured in thin PPMMA (plasma-polymerized methyl methacrylate) films over the temperature range $60^{\circ}C-140^{\circ}C$ and the applied voltage range 3V - 30V. The current, which increased with temperature rise at constant applied voltage, showed less absorption current (current decay with time) at higher temperature region compared with those at lower temperature region. And the current, which increased with applied voltage rise at the constant temperature, showed less absorption current at higher voltage compared with those at lower voltage. The electric field current density characteristic curves were abtained from the conduction current values were after applying voltage for 30 minutes. And transient conduction currents were analyzed with high field conduction theories.

  • PDF

Assessment of Insulation Deterioration in Stator Windings of High Voltage Motor (고압전동기 고정자 권선의 절연열화 평가)

  • Kim, Hee-Dong;Kong, Tae-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.711-716
    • /
    • 2012
  • To assess the insulation deterioration of stator windings, diagnostic and AC breakdown tests were performed on the eleven high voltage (HV) motors rated at 6kV. After completing the diagnostic tests, the AC overvoltage test was performed by gradually increasing the voltage applied to the stator windings until electrical insulation failure occurred, to obtain the breakdown voltage. Stator winding of motors 1, 3, and 8 failed at above rated voltage at 14 kV, 13.8kV, and 16.4kV, respectively. The breakdown voltage of three motors was higher than expected for good quality windings in 6kV motors. Based on deterioration evaluation criteria, the stator winding insulation of eleven HV motors are confirmed to be in good condition. The turning point of the current, $P_{i2}$, in the AC current vs. voltage characteristics occurred between 5kV and 6kV, and the breakdown voltage was low between 13.8kV and 16.4kV. There was a strong correlation between the breakdown voltage and various electrical characteristics in diagnostic tests including Pi2.

Electrochemical Characteristics of Ion-Exchange Membrane and Charged Mosaic Membrane (복합 하전 모자이크 막과 이온교환 막의 전기적화학적 특성)

  • Yang, Wong-Kang;Song, Myung-Kwan;Cho, Young-Suk
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • The effect of anionic and cationic exchange polymer layer on the chronopotentiometry (CP) and current voltage curves (I-V) of charged composite membrane are investigated. Also, the ion transport near the interface between electrolyte and ionic exchange polymer membranes (anionic and cationic ones) and charged mosaic polymer composite membrane is studied. The results show that both anionic and cationic polymer exchange membranes exhibit lower voltage drop over range of applied current density and possess favorable industrial application potentials, especially at low KCl concentration. While the charged mosaic polymer composite membrane didn't show any current-voltage change, irrespective to the type and the concentration of used electrolyte. CP and I-V measurements are effectively used to give some fundamental understanding for ion transport behavior of ion exchange polymer membrane near the interlace.

Design of SCR-Based ESD Protection Circuit for 3.3 V I/O and 20 V Power Clamp

  • Jung, Jin Woo;Koo, Yong Seo
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • In this paper, MOS-triggered silicon-controlled rectifier (SCR)-based electrostatic discharge (ESD) protection circuits for mobile application in 3.3 V I/O and SCR-based ESD protection circuits with floating N+/P+ diffusion regions for inverter and light-emitting diode driver applications in 20 V power clamps were designed. The breakdown voltage is induced by a grounded-gate NMOS (ggNMOS) in the MOS-triggered SCR-based ESD protection circuit for 3.3 V I/O. This lowers the breakdown voltage of the SCR by providing a trigger current to the P-well of the SCR. However, the operation resistance is increased compared to SCR, because additional diffusion regions increase the overall resistance of the protection circuit. To overcome this problem, the number of ggNMOS fingers was increased. The ESD protection circuit for the power clamp application at 20 V had a breakdown voltage of 23 V; the product of a high holding voltage by the N+/P+ floating diffusion region. The trigger voltage was improved by the partial insertion of a P-body to narrow the gap between the trigger and holding voltages. The ESD protection circuits for low- and high-voltage applications were designed using $0.18{\mu}m$ Bipolar-CMOS-DMOS technology, with $100{\mu}m$ width. Electrical characteristics and robustness are analyzed by a transmission line pulse measurement and an ESD pulse generator (ESS-6008).

Analysis of Transport Characteristics for Double Gate MOSFET using Analytical Current-Voltage Model (해석학적 전류-전압모델을 이용한 이중게이트 MOSFET의 전송특성분석)

  • Jung Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1648-1653
    • /
    • 2006
  • In this paper, transport characteristics have been investigated using analytical current-voltage model for double gate MOSFET(DGMOSFET). Scaling down to 100nm of gate length for MOSFET can bring about various problems such as a threshold voltage roll-off and increasing off current by tunneling since thickness of oxide is down by 1.fnm and doping concentration is increased. A current-voltage characteristics have been calculated according to changing of channel length,using analytical current-voltage relation. The analytical model has been verified by calculating I-V relation according to changing of oxide thickness and channel thickness as well as channel length. A current-voltage characteristics also have been compared and analyzed for operating temperature. When gate voltage is 2V, it is shown that a current-voltage characteristic in 77K is superior to in room temperature.

I-V Modeling Based on Artificial Neural Network in Anti-Reflective Coated Solar Cells (반사방지막 태양전지의 I-V특성에 대한 인공신경망 모델링)

  • Hong, DaIn;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.130-134
    • /
    • 2022
  • An anti-reflective coating is used to improve the performance of the solar cell. The anti-reflective coating changes the value of the short-circuit current about the thickness. However, the current-voltage characteristics about the anti-reflective coating are difficult to calculate without simulation tool. In this paper, a modeling technique to determine the short-circuit current value and the current-voltage characteristics in accordance with the thickness is proposed. In addition, artificial neural network is used to predict the short-circuit current with the dependence of temperature and thickness. Simulation results incorporating the artificial neural network model are obtained using MATLAB/Simulink and show the current-voltage characteristic according to the thickness of the anti-reflective coating.

Studies on The Optical and Electrical Properties if Europium Complexes with Monolayer and Multilayer (Europium complexes 단층과 다층 구조 박막의 전기적ㆍ광학적 특성에 관한 연구)

  • 이명호;표상우;이한성;김영관;김정수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.871-877
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic materials have been of great interest due to their possible applications for large-area flat-panel displays, where they are attractive because of their capability of multicolor emission, and low operation voltage. In this study, glass substrate/ITO/Eu(TTA)$_3$(phen)/Al, glass substrate/ITO/Eu(TTA)$_3$(phen)/Al and glass substrate/ITO/Eu(TTA)$_3$(phen)/AlQ$_3$/Al structures were fabricated by vacuum evaporation method, where aromatic diamine(TPD) was used as a hole transporting material, Eu(TTA)$_3$(phen) as an emitting material, and Tris(8-hydroxyquinoline) aluminu-m(AlQ$_3$) as an electron transporting layer. Electrolumescent(EL) and I-V characteristics of Eu(TTA)$_3$-(-phen) were investigated. These structures show the red EL spectra, which are almost the same at the PL spectrum of Eu(TTA)$_3$(phen). I-V characteristics of this structure show that turn-on voltage was 9V and current density was 0.01A/㎤ at a operation voltage of 9V. Electrical transporting phenomena of these structures were explained using the trapped-charge-limited current model with I-V characteristics.

  • PDF

The electrical properties of in 18kV ZnO surge arrestor with mixed direct and 60Hz Alternating Voltage (중첩전압(직류 +60Hz 교류)에서 18kV 배전용 피뢰기의 전기적 특성)

  • Lee, Bok-Hee;Lee, Seung-Ju;Lee, Su-Bong;Jung, Dong-Cheol;Baek, Young-Hwan
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.291-294
    • /
    • 2007
  • This paper preserts the characteristics of leakage currents flowing through 18 kV zinc oxide (ZnO) surge arrester under the mixed DC and AC voltages. The I-V curves of ZnO surge arrester were measured as a function of the voltage ratio K The I-V curves under the mixed DC and AC voltages lay between the pure DC and AC characteristics, and the cross-over phenomenon in I-V curves was observed at the low current region As a result, the increase of DC component to mixed voltages causes the increase of resistive component of total leakage current th ZnO surge arrester.

  • PDF

Current-voltage Characteristics of Water-adsorbed Imogolite Film

  • Park, Jae-Hong;Lee, Jung-Woo;Chang, Sun-Young;Park, Tae-Hee;Han, Bong-Woo;Han, Jin-Wook;Yi, Whi-Kun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.1048-1050
    • /
    • 2008
  • Electric current flow was observed through imogolite film when imogolite ($(HO)_3Al_2O_3SiOH$) was exposed to water molecules and connected to external electrodes. Current flow was due to the bound water on the surface of imogolite. Current flow increased as the pH of the water decreased. The current-voltage (I-V) measurements from a field effective transistor (FET) using $H_2O$/imogolite film revealed that the current carrier in $H_2O$/ imogolite had p-type characteristics, i.e. the carrier was probably $H^+$. The possible mechanism for current transportation in imogolite/water was also suggested in this paper.