• Title/Summary/Keyword: current pulse

Search Result 1,871, Processing Time 0.026 seconds

The Propose of Optimal Flow Data Acquisition by Error Rate Analysis of Flow Data (유량 데이터 오차율 분석을 통한 최적의 유량데이터 취득방안 제안)

  • Kim, Yunha;Choi, Hyunju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.3
    • /
    • pp.249-256
    • /
    • 2017
  • Recently, application areas based on M2M (Machine-to-Machine communications) and IoT (Internet of Things) technologies are expanding rapidly. Accordingly, water flow and water quality management improvements are being pursued by applying this technology to water and sewage facilities. Especially, water management will collect and store accurate data based on various ICT technologies, and then will expand its service range to remote meter-reading service using smart metering system. For this, the error in flow rate data transmitting should be minimized to obtain credibility on related additional service system such as real time water flow rate analysis and billing. In this study, we have identified the structural problems in transmitting process and protocol to minimize errors in flow rate data transmission and its handling process which is essential to water supply pipeline management. The result confirmed that data acquisition via communication system is better than via analogue current values and pulse, and for communication method case, applying the industrial standard protocol is better for minimizing errors during data acquisition versus applying user assigned method.

Visualization of Plasma Produced in a Laser Beam and Gas Jet Interaction (레이저와 질소가스 상호충돌로부터 발생되는 플라스마 가시화)

  • Kim Jong-Uk;Kim Chang-Bum;Kim Guang-Hoon;Lee Hae-June;Suk Hy-Yong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.39-42
    • /
    • 2002
  • In the current study, characteristics of the laser-induced plasma were investigated in a gas filled chamber or in a gas jet by using a relatively low intensity laser $(I\;\leq\;5\;\times\;10^{12}\;W/cm^2)$. Temporal evolutions of the produced plasma were measured using the shadow visualization and the shock wave propagation as well as the electron density profiles in the plasma channel was measured using the Mach-Zehnder interferometry. Experimental results such as the structure of the produced plasma, shock propagation speed $(V_s)$, electron density profiles $(n_e)$, and the electron temperature $(T_e)$ are discussed in this study. Since the diagnostic laser pulse occurs over short time intervals compared to the hydrodynamic time scales of expanding plasma or a gas jet, all the transient motion occurring during the measurement is assumed to be essentially frozen. Therefore, temporally well-resolved quantitative measurements were possible in this study.

  • PDF

Effect of Low Frequency Electrical Stimulation on VEGF Expression of Suspension Induced Atrophic Muscle (뒷다리 현수 유도 위축근에 대한 저빈도 전기자극의 VEGF 발현에 미치는 영향)

  • Kang, Jong-Ho;Han, Jong-Man
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.2
    • /
    • pp.273-280
    • /
    • 2010
  • Purpose : The purpose of this experiment was to evaluate the pre-application effect of low frequency electrical stimulation(LFES) on VEGF expression of atrophic muscle and to determine the optimal pre-application period of LFES for prevent muscle atropy Methods : Twenty-five adult sprague-dawley rats were randomly assigned to weight bearing group, hindlimb suspension for 14 days group, hindlimb suspension with pre-application of LFES for 14 days group, hindlimb suspension with pre-application of LFES for 11 dsys group and, hindlimb suspension with pre-application LFES for 7 dsys group. 16Hz of Biphasic pulse current was applied to gastrocnemius for 15min per days. Results : VEGF were decreased expression in HSG groups, whereas VEGF were significantly increased in HS+ES14G, HS+ES11G, HS+ES7G groups Conclusion : LFES during the hindlimb suspension showed a positive effect in VEGF induction and early application is strongly encourage VEGF induction. This indicated that pre-application of LFES could prevent muscle atrophy.

Fatigue Crack Localization Using Laser Nonlinear Wave Modulation Spectroscopy (LNWMS)

  • Liu, Peipei;Sohn, Hoon;Kundu, Tribikram
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.419-427
    • /
    • 2014
  • Nonlinear features of ultrasonic waves are more sensitive to the presence of a fatigue crack than their linear counterparts are. For this reason, the use of nonlinear ultrasonic techniques to detect a fatigue crack at its early stage has been widely investigated. Of the different proposed techniques, laser nonlinear wave modulation spectroscopy (LNWMS) is unique because a pulse laser is used to exert a single broadband input and a noncontact measurement can be performed. Broadband excitation causes a nonlinear source to exhibit modulation at multiple spectral peaks owing to interactions among various input frequency components. A feature called maximum sideband peak count difference (MSPCD), which is extracted from the spectral plot, measures the degree of crack-induced material nonlinearity. First, the ratios of spectral peaks whose amplitudes are above a moving threshold to the total number of peaks are computed for spectral signals obtained from the pristine and the current state of a target structure. Then, the difference of these ratios are computed as a function of the moving threshold. Finally, the MSPCD is defined as the maximum difference between these ratios. The basic premise is that the MSPCD will increase as the nonlinearity of the material increases. This technique has been used successfully for localizing fatigue cracks in metallic plates.

A study on the optimization design of air current injection system to improve bag-filter dedusting performance (여과집진기의 탈진 능력 향상을 위한 기류 분사 시스템 최적화 설계에 관한 연구)

  • Jung, Yu-Jin;Hong, Sung-Gil;Jung, Jong-Hyeon;Lim, Ki-Hyuk;Kim, Jin-Uk;Shon, Byung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.262-265
    • /
    • 2011
  • 본 연구는 탈진 기류 분사 시스템의 최적화 설계에 관한 기초 연구의 일환으로 전산유체역학(CFD)을 이용하여 일반 블로우 튜브와 단순 벤츄리 조합의 충격 기류(Pulse air jet) 방식의 탈진 장치에 대한 탈진 성능과 벤츄리 입구에 기류 유도용 구조물을 설치한 경우의 탈진 성능을 비교하였다. 각 Case별로 벤츄리 내부로 유입되는 탈진 공기량을 예측한 결과, case 2의 벤츄리 형상 개조시 case 1 보다 벤츄리로 유입되는 탈진 공기량이 약 20% 증폭되는 것으로 나타났다. 또한 필터백 표면에서의 탈진 기류 전달 분포를 예측한 결과, 모든 case가 필터백의 국한된 영역으로 탈진 기류가 집중됨을 알 수 있었다. 또한, case 2의 경우가 case 1보다 오히려 탈진 기류의 전달 수준이 불량함을 알 수 있다. 이는 case 2의 경우 벤츄리 입구에 기류 유도용 구조물을 설치한 것이 탈진 공기량을 증폭시키는데에는 도움이 되나, 오히려 벤츄리 내부로 유입된 탈진 기류의 직진성을 보완하여 필터백 내부에서 탈진 기류의 확장을 방해하기 때문인 것으로 판단된다.

  • PDF

Detonation Wave Studies for CVC Engines of TBCC (TBCC를 위한 CVC 엔진의 데토네이션 현상 기초 연구)

  • Choi, J.Y.;Parent, Bernard;Cho, D.R.;Kang, K.;Shin, J.R.;Lee, S.H.;Yi, T.H.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.326-329
    • /
    • 2008
  • DARPA's hypersonic propulsion program VULCAN is aimed for development of Mach 4+ capable engine by combining current production turbofan engine such as F119 with CVC (Constant Volume Combustion) engine. Final goal is a TBCC(Turbo-based Combined Cycle) engine by combining with dual mode ramjet/scramjet engine. CVC is a common designation of new concept of high efficiency engines, such as Pulse Detonation Engine (PDE) or Continuous Detonation Engine (CDE), which use the detonation as a combustion mechanism. Present paper introduces the internationally collaborative research activities carried out in Aerospace Combustion and Propulsion Laboratory of the department of Aerospace Engineering of the Pusan national University.

  • PDF

Microwave Signal Spectrum Broadening System Based on Time Compression

  • Kong, Menglong;Tan, Zhongwei;Niu, Hui;Li, Hongbo;Gao, Hongpei
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.310-316
    • /
    • 2020
  • We propose and experimentally demonstrate an all-optical radio frequency (RF) spectrum broadening system based on time compression. By utilizing the procedure of dispersion compensation values, the frequency domain is broadened by compressing the linear chirp optical pulse which has been multiplexed by the radio frequency. A detailed mathematical description elucidates that the time compression is a very preferred scheme for spectrum broadening. We also report experimental results to prove this method, magnification factor at 2.7, 8 and 11 have been tested with different dispersion values of fiber, the experimental results agree well with the theoretical results. The proposed system is flexible and the magnification factor is determined by the dispersion values, the proposed scheme is a linear system. In addition, the influence of key parameters, for instance optical bandwidth and the sideband suppression ratio (SSR), are discussed. Magnification factor 11 of the proposed system is demonstrated.

Analysis of a Buck DC-DC Converter for Smart Electronic Applications (스마트기기용 강압형 DC-DC 변환기 특성해석)

  • Kang, Bo-gyeong;Na, Jae-Hun;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.373-379
    • /
    • 2019
  • Nowadays, the IoT portable electronic devices have become more useful and diverse, so they require various supply voltage levels to operate. This paper presents a DC-DC buck converter with pulse width modulation (PWM) for portable electronic devices. The proposed step-down DC-DC converter consists of passive elements such as capacitors, inductors, and resistors and an integrated chip (IC) for signal control to reduce power consumption and improves ripple voltage with the resolution. The proposed DC-DC converter is simulated and analyzed in PSPICE circuit design platform, and implemented on the prototype PCB board with a Texas Instruments LM5165 IC. The proposed buck converter is showed 92.6% of peak efficiency including a load current range of 4-10 mA, 3.29 mV of the voltage ripple at 5 V output voltage for the supply voltage 12 V. Measured and Simulated power efficiency are made good agreement with each other.

The Study on the Properties of He Glow discharge in a Dielectric Barrier Discharge (DBD) Model (DBD 전극구조에서의 He 가스 글로우방전 특성연구)

  • So, Soon-Youl
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.214-220
    • /
    • 2018
  • Light sources induced by gas discharge using rare gases have been widely used in the thin film deposition, the surface modification and the polymer etching. A dielectric barrier discharge (DBD) has been developed in order to consistently emit light and control the wavelength of the emission light. However, much research on the characteristics of the movement of discharge particles is required to improve the efficiency of the light lamp and the life-time of the light apparatus in detail. In this paper, we developed a He DBD discharge simulation tool and investigated the characteristics of discharge particles which were electrons, two positive ions ($He^+$, $He_2^+$) and 5 excited particles ($He^*(1S)$, $He^*(3S)$, $He^*$, $He^{**}$, $He^{***}$). The discharge currents showed the transition from pulse mode to continuous mode with the increase of power. With the accumulated charges on the barrier walls, the discharge current was rapidly increased and caused oscillation of the discharge voltage. As the gas pressure increased, $He_2^+$ and $He^*(3S)$ became the dominant activated particles. The input power was mostly consumed by electrons and $He_2^+$ ion. And the change curve showed that power consumption by electrons increased more with gas pressure than with source voltage or frequency.

Dimmable Spatial Intensity Modulation for Visible-light Communication: Capacity Analysis and Practical Design

  • Kim, Byung Wook;Jung, Sung-Yoon
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.532-539
    • /
    • 2018
  • Multiple LED arrays can be utilized in visible-light communication (VLC) to improve communication efficiency, while maintaining smart illumination functionality through dimming control. This paper proposes a modulation scheme called "Spatial Intensity Modulation" (SIM), where the effective number of turned-on LEDs is employed for data modulation and dimming control in VLC systems. Unlike the conventional pulse-amplitude modulation (PAM), symbol intensity levels are not determined by the amplitude levels of a VLC signal from each LED, but by counting the number of turned-on LEDs, illuminating with a single amplitude level. Because the intensity of a SIM symbol and the target dimming level are determined solely in the spatial domain, the problems of conventional PAM-based VLC and related MIMO VLC schemes, such as unstable dimming control, non uniform illumination functionality, and burdens of channel prediction, can be solved. By varying the number and formation of turned-on LEDs around the target dimming level in time, the proposed SIM scheme guarantees homogeneous illumination over a target area. An analysis of the dimming capacity, which is the achievable communication rate under the target dimming level in VLC, is provided by deriving the turn-on probability to maximize the entropy of the SIM-based VLC system. In addition, a practical design of dimmable SIM scheme applying the multilevel inverse source coding (MISC) method is proposed. The simulation results under a range of parameters provide baseline data to verify the performance of the proposed dimmable SIM scheme and applications in real systems.