• Title/Summary/Keyword: current force

Search Result 2,290, Processing Time 0.024 seconds

A Study on the Monitoring of Tool Fracture using Motor Current in Turning (선반가공에서 모터 전류를 이용한 공구 파손 감지에 관한 연구)

  • Youn, Jae-Woong;Kim, Hong-Seok;Kim, Seung-Gi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.4
    • /
    • pp.43-53
    • /
    • 2016
  • In this paper, monitoring method of tool fracture using motor current was proposed for turning process. In order to take more reliable current signal, cutting force signal was compared as reference signal because cutting force signal is reliable, and analysis of signal correlation between cutting force and motor current was performed. The static components of the cutting force and motor current signals were correlated very well for different cutting conditions, and it was proven to use the motor current as an proper sensor for monitoring of tool fracture. To understand the characteristics of motor current, various kinds of cutting experiment were performed including tool fracture experiments. As a result, a new method to detect tool fracture using motor current in turing was proposed, and a large number of fracture experiments were carried out to evaluate the reliability of the proposed method. Finally, it can be possible to detect the tool fracture reliably.

The Effect of Higher Vibration Modes on the Design Seismic Load (고차진동모드의 영향을 고려한 충지진하중)

  • 이동근;이석용;신용우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.73-78
    • /
    • 1990
  • In current practice of earthquake resistant design the equivalent lateral force procedure is widely used for its simplicity and convenience. But the equivalent lateral force procedure is derived based on the assumption that the dynamic behavior of the structure is governed primarily by the fundamental vibration mode. Therefore proper prediction of dynamic responses of the structure is unreliable using the equivalent lateral force procedure when the effect of higher vibration modes on the dynamic behavior is negligible. In this study design seismic load which can reflect the effect of higher vibration modes is proposed from the point of view of proper assessment of story shears which have the major influence on the design moment of beams and columns. To evaluate the effect of higher modes, differences between the story force based on the equivalent lateral force procedure specified in current earthquake resistance building code and the one based on modal analysis using design spectrum are examined. From these results improved design seismic load for the equivalent lateral force procedure which can reflect the effect of higher vibration modes is proposed.

  • PDF

Magnetic Saturation Effect of the Iron Core in Current Transformers Under Lightning Flow

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.97-102
    • /
    • 2017
  • A current transformer (CT) is a type of sensor that consists of a combination of electric and magnetic circuits, and it measures large ac currents. When a large amount of current flows into the primary winding, the alternating magnetic flux in the iron core induces an electromotive force in the secondary winding. The characteristics of a CT are determined by the iron core design because the iron core is saturated above a certain magnetic flux density. In particular, when a large current, such as a current surge, is input into a CT, the iron core becomes saturated and the induced electromotive force in the secondary winding fluctuates severely. Under these conditions, the CT no longer functions as a sensor. In this study, the characteristics of the secondary winding were investigated using the time-difference finite element method when a current surge was provided as an input. The CT was modeled as a two-dimensional analysis object using constraints, and the saturation characteristics of the iron core were evaluated using the Newton-Rhapson method. The results of the calculation were compared with the experimental data. The results of this study will prove useful in the designs of the iron core and the windings of CTs.

Electromotive Force Characteristics of Current Transformer According to the Magnetic Properties of Ferromagnetic Core

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.37-41
    • /
    • 2015
  • The most common structure of the current transformer (CT) consists of a length of wire wrapped many times around a silicon steel ring passed over the circuit being measured. Therefore, the primary circuit of CT consists of a single turn of the conductor, with a secondary circuit of many tens or hundreds of turns. The primary winding may be a permanent part of the current transformer, with a heavy copper bar to carry the current through the magnetic core. However, when the large current flows into a wire, it is difficult to measure its magnitude of current because the core is saturated and the core shows magnetic nonlinear characteristics. Therefore, we proposed a newly designed CT which has an air gap in the core to decrease the generated magnetic flux. Adding the air gap in the magnetic path increases the total magnetic reluctance against the same magnetic motive force (MMF). Using a ferrite core instead of steel also causes the generation of low magnetic flux. These features can protect the magnetic saturation of the CT core compared with the steel core. This technique can help the design of the CT to obtain a special shape and size.

Effects of Hall current in a transversely isotropic magnetothermoelastic with and without energy dissipation due to normal force

  • Kumar, Rajneesh;Sharma, Nidhi;Lata, Parveen
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.91-103
    • /
    • 2016
  • This investigation is concerned with the disturbances in a homogeneous transversely isotropic thermoelastic rotating medium with two temperature, in the presence of the combined effects of Hall currents and magnetic field due to normal force of ramp type. The formulation is applied to the thermoelasticity theories developed by Green-Naghdi Theories of Type-II and Type-III. Laplace and Fourier transform technique is applied to solve the problem. The analytical expressions of displacements, stress components, temperature change and current density components are obtained in the transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically to show the effects of Hall current and anisotropy on the resulting quantities. Some special cases are also deduced from the present investigation.

Development for Tire Load Control System using PLC PID function (PLC의 PID 제어에 의한 자동차용 타이어 하중제어에 관한 연구)

  • Lee, Ki-Seong;Jeong, Tae-Woon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2352-2354
    • /
    • 2003
  • An apparatus and method for imposing a desired average radial force on tire by calculating the current average force between the tire and load wheel based on the average radial force and radial distance between the tire load wheel over the last previous complete revolution of the tire, the spring constant of the tire and the current radial distance between the tire and the load wheel.

  • PDF

A Study of Tire Road Friction Estimation for Controlling Rear Wheel Driving Force of 4WD Vehicle (4WD 차량의 후륜 구동력 제어를 위한 구동시 노면마찰계수 추정에 관한 연구)

  • Park, Jae-Young;Shim, Woojin;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.512-519
    • /
    • 2016
  • In this study, the tire road friction estimation(TRFE) algorithm for controlling the rear wheel driving force of a 4WD vehicle during acceleration is developed using a standard sensor in an ordinary 4WD passenger car and a speed sensor. The algorithm is constructed for the wheel shaft torque, longitudinal tire force, vertical tire force and maximum tire road friction estimation. The estimation results of shaft torque and tire force were validated using a torque sensor and wheel force transducer. In the algorithm, the current road friction is defined as the proportion calculated between longitudinal and vertical tire force. Slip slop methods using current road friction and slip ratio are applied to estimate the road friction coefficient. Based on this study's results, the traction performance, fuel consumption and drive shaft strength performance of a 4WD vehicle are improved by applying the tire road friction estimation algorithm.

Study of changes in the kinetic parameters of corrosion on the macrocell current induced by the repair of reinforced concrete structures - Results of numerical simulation

  • Mostafa Haghtalab;Vahed Ghiasi;Aliakbar Shirzadi Javid
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.287-302
    • /
    • 2023
  • Corrosion of reinforcing bars in reinforced concrete structures due to chloride attack in environments containing chloride ions is one of the most important factors in the destruction of concrete structures. According to the abundant reports that the corrosion rate around the repair area has increased due to the macro-cell current known as the incipient anode, it is necessary to understand the effective parameters. The main objective of this paper is to investigate the effect of the kinetic parameters of corrosion including the cathodic Tafel slope, exchange current density, and equilibrium potential in repair materials on the total corrosion rate and maximum corrosion rate in the patch repair system. With the numerical simulation of the patch repair system and concerning the effect of parameters such as electromotive force (substrate concrete activity level), length of repair area, and resistivity of substrate and repair concrete, and with constant other parameters, the sensitivity of the macro-cell current caused by changes in the kinetic parameters of corrosion of the repairing materials has been investigated. The results show that the maximum effect on the macro-cell current values occurred with the change of cathodic Tafel slope, and the effect change of exchange current density and the equilibrium potential is almost the same. In the low repair extant and low resistivity of the repairing materials, with the increase in the electromotive force (degree of substrate concrete activity) of the patch repair system, the sensitivity of the total corrosion current reduces with the reduction in the cathode Tafel slope. The overall corrosion current will be very sensitive to changes in the kinetic parameters of corrosion. The change in the cathodic Tafel slope from 0.16 to 0.12 V/dec and in 300 mV the electromotive force will translate into an increase of 200% of the total corrosion current. While the percentage of this change in currency density and equilibrium potential is 53 and 43 percent, respectively. Moreover, by increasing the electro-motive force, the sensitivity of the total corrosion current decreases or becomes constant. The maximum corrosion does not change significantly based on the modification of the corrosion kinetic parameters and the modification will not affect the maximum corrosion in the repair system. Given that the macro-cell current in addition to the repair geometry is influenced by the sections of reactions of cathodic, anodic, and ohmic drop in repair and base concrete materials, in different parameters depending on the dominance of each section, the sensitivity of the total current and maximum corrosion in each scenario will be different.

Analysis of the Current Collection Quality for Next Generation High-Speed Trains with Measurements of the Dynamic Contact Force (동적 접촉력 측정을 통한 차세대 고속열차의 집전성능 분석)

  • Oh, Hyuck Keun;Ji, Hyung Min;Kim, Young Guk;Kim, Seogwon
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.157-164
    • /
    • 2014
  • The contact force between the pantograph and the catenary is a key factor determining the current collection quality, as they can ensure stable electrical power to the train. In this study, we analyzed the dynamic contact force for HEMU-430X depending on the train speed. It was confirmed through the results that the standard deviation of the contact force increases with an increase in the train speed. It was also verified that the span of the catenary system is a very important factor with regard to the contact force when analyzed with frequency analysis. To secure stable power in speed that exceeds 400km/h, the statistical variation of the contact force should be minimized. To realize this, the catenary tension was increased and the mass of the pan-head was decreased. The ensuing effects were then quantitatively analyzed in terms of the contact force. In addition, the differences in the contact force between a tunnel and an open field were analyzed based on a frequency analysis.

Tool Fracture Detection in Milling Process (II) -Part 2: Tool Fracture Detection in Rough Milling Using Spindle Motor Current- (밀링 공정시 공구 파손 검출 (II) -제 2 편: 주축모터 전류를 이용한 밀링의 황삭 가공 중 공구파손 검출-)

  • 김기대;이강희;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.110-119
    • /
    • 1998
  • Dynamic cutting force variations in milling process were measured indirectly using spindle motor current. Magnitude of the spindle motor current is independent of cutting direction. Quasi-static sensitivity of the spindle motor current is higher than that of the feed motor current. Dynamic sensitivity of the spindle motor current is lower but cutting force was correctly represented by spindle RMS current in rough milling. In rough milling, chipping and tool fracture were well detected by the proposed tool fracture index using spindle motor current.

  • PDF