• Title/Summary/Keyword: current error compensation

Search Result 170, Processing Time 0.036 seconds

Analysis and a Compensation Method for Torque Ripple caused by Position Error in Switched Reluctance Motor Position Sensorless Control (스위치드 릴럭턴스 전동기의 위치 센서리스 제어시 위치오차에 의해 발생하는 토크리플 해석과 그 보상 방법)

  • Oh, Ju-Hwan;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.806-807
    • /
    • 2011
  • This paper presents a new sensorless controller used with both the classical sliding mode observer(SMO) and the rate of current change in order to a reduced torque ripple for switched reluctance motor (SRM) sensorless drives. The new sensorless scheme consists of a sliding mode observer (SMO)-based position sensorless approach for high speeds along with a low-resolution discrete the rate of current change for low speeds and standstill. The new position estimation resets between the SMO and the low-resolution of current change according to the speed sign and the position error difference between the SMO and the low-resolution rate of current change. The simulation results show the robustness of this new high performance sensorless control approach with the hybrid sensorless control topology.

  • PDF

Compensation algorithm of a voltage transformer considering hysteresis characteristics (히스테리시스 특성을 고려한 전압 변성기 오차 보상 알고리즘)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Park, Jong-Min;Jang, Sung-Il;Kim, Yong-Guen
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.12-14
    • /
    • 2007
  • A voltage transformer (VT) is used to transform a high voltage into a low voltage as an input for a metering device or a protection relay. VTs use an iron core which maximizes the flux linkage. The primary current of the VT has non-fundamental components caused by the hysteresis characteristics of the iron core. It causes a voltage drop in the winding impedances resulting in the error of the VT. This paper describes a compensation algorithm for the VT. The proposed algorithm can compensate the secondary voltage of VT by calculating the primary current from the exciting current of the hysteresis loop in the voltage transformer. In this paper, the exciting branch was divided into a non-linear core loss resistor and a non-linear magnetizing inductor. The performance of the proposed algorithm was validated under various conditions using EMTP generated data. Test results show that the proposed compensation algorithm can improve the accuracy of the VT significantly.

  • PDF

Accurate Section Loading Estimation Method Based on Voltage Measurement Error Compensation in Distribution Systems (배전선로에서 전압측정치의 오차보정을 통한 정확한 구간부하 추정 방법)

  • Park, Jaehyeong;Jeon, CheolWoo;Lim, Seongil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.43-48
    • /
    • 2016
  • Operational applications such as service restoration, voltage control and protection coordination are calculated based on the active and reactive power loading of the sections in the distribution networks. Loadings of the sections are estimated using the voltage and current measured from the automatic switches deployed along the primary feeders. But, due to the characteristics of the potential transformer attached to the switches, accuracy of the voltage magnitude is not acceptable to be used for section loading calculation. This paper proposes a new accurate section loading estimation method through voltage measurement error compensation by calculating voltage drop of the distribution line. In order to establish feasibility of the proposed method, various case studies based on Matlab simulation have been performed.

Performance Improvement of Model Predictive Control Using Control Error Compensation for Power Electronic Converters Based on the Lyapunov Function

  • Du, Guiping;Liu, Zhifei;Du, Fada;Li, Jiajian
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.983-990
    • /
    • 2017
  • This paper proposes a model predictive control based on the discrete Lyapunov function to improve the performance of power electronic converters. The proposed control technique, based on the finite control set model predictive control (FCS-MPC), defines a cost function for the control law which is determined under the Lyapunov stability theorem with a control error compensation. The steady state and dynamic performance of the proposed control strategy has been tested under a single phase AC/DC voltage source rectifier (S-VSR). Experimental results demonstrate that the proposed control strategy not only offers global stability and good robustness but also leads to a high quality sinusoidal current with a reasonably low total harmonic distortion (THD) and a fast dynamic response under linear loads.

RTK Latency Estimation and Compensation Method for Vehicle Navigation System

  • Jang, Woo-Jin;Park, Chansik;Kim, Min;Lee, Seokwon;Cho, Min-Gyou
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.1
    • /
    • pp.17-26
    • /
    • 2017
  • Latency occurs in RTK, where the measured position actually outputs past position when compared to the measured time. This latency has an adverse effect on the navigation accuracy. In the present study, a system that estimates the latency of RTK and compensates the position error induced by the latency was implemented. To estimate the latency, the speed obtained from an odometer and the speed calculated from the position change of RTK were used. The latency was estimated with a modified correlator where the speed from odometer is shifted by a sample until to find best fit with speed from RTK. To compensate the position error induced by the latency, the current position was calculated from the speed and heading of RTK. To evaluate the performance of the implemented method, the data obtained from an actual vehicle was applied to the implemented system. The results of the experiment showed that the latency could be estimated with an error of less than 12 ms. The minimum data acquisition time for the stable estimation of the latency was up to 55 seconds. In addition, when the position was compensated based on the estimated latency, the position error decreased by at least 53.6% compared with that before the compensation.

A Study of the ZCP Estimation Methods considering Discretization Error and High Speed BLDC Sensorless Drive (이산화 오차를 고려한 ZCP 추정방법과 고속 BLDC 센서리스 구동에 관한 연구)

  • Seo, Eunjeong;Sohn, Jeongwon;Sunwoo, Myoungho;Lee, Wootaik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.95-102
    • /
    • 2014
  • This paper presents zero crossing point(ZCP) estimation methods considering discretization error for a high speed brushless DC(BLDC) motor drive. The ZCP is estimated by detecting the change of back-EMF polarity for the BLDC sensorless drive, and the discretization error exist on the estimated ZCP. The discretization error of the ZCP is a cause of the delay of a commutation timing of current and increment of a current ripple factor. Besides a delay of a ZCP estimation brings on the limitation of a speed range for the BLDC sensorless drive. The compensation method based on the error analysis with probability theory for reducing the effects of the discretization error of the ZCP is proposed. Also a ZCP estimation method according to the Back-EMF patterns is proposed to widen the speed range for the BLDC sensorless drive. The proposed methods are verified by the experiment.

Design and fabrication of a 300A class general-purpose current sensor (300A급 일반 산업용 전류센서의 설계 및 제작)

  • Park, Ju-Gyeong;Cha, Guee-Soo;Ku, Myung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.1-8
    • /
    • 2016
  • Current sensors are used widely in the fields of current control, monitoring, and measuring. They have become more popular with the increasing demand for smart grids in a power network, generation of renewable energy, electric cars, and hybrid cars. Although open loop Hall effect current sensors have merits, such as low cost, small size, and weight, they have low accuracy. This paper describes the design and fabrication of a 300A open loop current sensor that has high accuracy and temperature performance. The core of the current sensor was calculated numerically and the signal conditioning circuits were designed using circuit analysis software. The characteristics of the manufactured open loop current sensor of 300 A class was measured at currents up to 300 A. According to the test of the current sensor, the accuracy error and linearity error were 0.75% and 0.19%, respectively. When the temperature compensation was carried out with the relevant circuit, the temperature coefficients were less than $0.012%/^{\circ}C$ at temperatures between $-25^{\circ}C$ and $85^{\circ}C$.

Compensating algorithm for a measurement type CT considering hysteresis characteristic of the core (히스테리시스 특성을 고려한 측정용 변류기 보상 알고리즘)

  • Kang, Yong-Cheol;Zheng, Taiying;Lee, Byung-Eun;So, Soon-Hong;Lee, Hyun-Woong;Lee, Mi-Sun;Park, Jung-Ho;Choi, Hyun-Tae;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.44-45
    • /
    • 2007
  • This paper deals with error compensation in current transformers. Since the exciting current can be considered as the main error source, its evaluation can allow the compensation of its detrimental effects to be obtained. The exciting current required by the transformer in every king of steady state operation can be determined by simply acquiring the secondary current, provided that the examined CT has been preliminarily identified. This paper also proposed a new approach to the model of the exciting branch. The exciting branch can be divided into a non-linear core loss resistor, and a non-linear magnetizing inductor whose flux and current characteristic is not the same as the characteristic shown by the joined tips of the first quadrant of a family of hysteresis loops. The performance of the proposed algorithm was validated under various conditions using EMTP generated data. Test result show, in all cases an improvement in primary current reproduction accuracy, compared with that achieved using CT's ratio.

  • PDF

Compensation Algorithm for Periodic Torque Ripple of AC Motors (교류전동기의 주기적인 토크리플 보상알고리즘)

  • Kim, Byong-Seob;Choi, Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.551-557
    • /
    • 2006
  • The electrical frequency synchronized periodic torque ripple exits in the AC motor. There are various sources of torque ripple in AC motor such as current measurement error, dead time, etc. This paper proposes a compensation algorithm which suppresses undesired side effect known as the periodic torque ripple of AC motor. The torque ripple compensation classified as the speed ripple detector and torque ripple compensator. This paper proves a speed ripple minimization at steady state by analysis of torque ripple compensator. A new speed ripple detector improves the performance of torque ripple compensation algorithm. The simulation and experimental results show that the compensation algorithm is effective and the torque ripple compensation method improves the performance of speed ripple detector by eliminating torque ripples effectively.

A Neutral-Voltage-Compensated Sensorless Control of Brushless DC Motor

  • Won, Chang-Hee;Song, Joong-Ho;Ick Choy;Lim, Myo-Taeg
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.59-64
    • /
    • 2003
  • This paper presents a new rotor position estimation method for brushless DC motors. The estimation error of the rotor position clearly provokes the phase shift angle misaligned between the phase current and the back-EMF waveforms, which causes torque ripple in brushless DC motor drives. Such an estimation error can be reduced with the help of the proposed neutral-voltage-based estimation method, which is structured as a closed loop observer. A neutral voltage appearing during the normal mode of the inverter operation is found to be an observable and control table measure, which can be used for estimating an exact rotor position. This neutral voltage is obtained from the DC-link current, the switching logic, and the motor speed values. The proposed algorithm, which can be easily implemented by using a single DC-link current and the motor terminal voltage sensors, is verified by simulation and experiment results.