DOI QR코드

DOI QR Code

Design and fabrication of a 300A class general-purpose current sensor

300A급 일반 산업용 전류센서의 설계 및 제작

  • Received : 2016.03.10
  • Accepted : 2016.06.02
  • Published : 2016.06.30

Abstract

Current sensors are used widely in the fields of current control, monitoring, and measuring. They have become more popular with the increasing demand for smart grids in a power network, generation of renewable energy, electric cars, and hybrid cars. Although open loop Hall effect current sensors have merits, such as low cost, small size, and weight, they have low accuracy. This paper describes the design and fabrication of a 300A open loop current sensor that has high accuracy and temperature performance. The core of the current sensor was calculated numerically and the signal conditioning circuits were designed using circuit analysis software. The characteristics of the manufactured open loop current sensor of 300 A class was measured at currents up to 300 A. According to the test of the current sensor, the accuracy error and linearity error were 0.75% and 0.19%, respectively. When the temperature compensation was carried out with the relevant circuit, the temperature coefficients were less than $0.012%/^{\circ}C$ at temperatures between $-25^{\circ}C$ and $85^{\circ}C$.

오늘날 전류센서는 전류량 제어, 감시, 계측 등 매우 다양한 분야에서 사용되고 있다. 또한 전력망의 스마트 그리드사업, 신재생에너지 발전, 전기자동차와 하이브리드 자동차 등의 수요가 커지면서 그 사용영역이 점차 확대되고 있는 추세이다. 여러 종류의 전류센서 중에서 홀 소자를 사용하는 개방형 전류센서는 다른 형식의 전류센서에 비해 가격이 싸고, 크기와 무게가 작은 장점이 있지만 정밀도가 낮고 주위의 온도 변화에 따라 특성이 변하는 것이 단점이다. 이러한 단점을 보완하기 위하여 본 연구에서는 정밀도와 온도성능이 뛰어난 300A급 개방형 전류센서를 설계 및 제작하였다. 300A급 개방형 전류센서를 제작하기 위해서 수치해석을 통해 철심을 설계하고 회로해석 프로그램을 이용하여 신호처리에 필요한 회로들을 설계하였다. 이러한 과정을 통해서 SMD(Surface Mount Device) 형태로 제작된 300A급 개방형 전류센서는 30 ~ 300A의 직류 및 교류전류를 통전한 실험에서 정밀도 오차가 0.75% 이내, 선형도 오차가 0.19% 이내였다. 또한 온도보상회로를 포함한 전류센서를 $-25{\sim}85^{\circ}C$의 온도범위에서 동작시켰을 때 온도계수는 $0.012%/^{\circ}C$ 이내였다.

Keywords

References

  1. G. Velasco-Quesada, M. Roman-Lumbreras, A. Conesa-Roca, F. Jerez, "Design of a Low-Consumption Fluxgate Transducer for High-Current Measurement Applications," IEEE Sensors Journal, vol. 11, no. 2, pp. 280-287, Feb. 2011. DOI: http://dx.doi.org/10.1109/JSEN.2010.2054831
  2. X. Yang, Y. Li, W. Guo, W. Zheng, C. Xie, H. Yu, "A New Compact Fluxgate Current Sensor for AC and DC Application," IEEE Trans. Magnetics, vol. 50, no. 11, 4005704, Nov. 2014. DOI: http://dx.doi.org/10.1109/TMAG.2014.2330373
  3. C. Liu, J. G. Liu, "Offset Error reduction in Open Loop Hall Effect Current Sensors Powered with Single Voltage Source," 2014 5th IEEE International Workshop on Applied Measurements for Power Systems (AMPS), Aachen, Germany, Sept. 2014. DOI: http://dx.doi.org/10.1109/amps.2014.6947705
  4. G. Gokmen, K. Tuncalp, "The design of a Hall effect current transformer and examination of the linearity with real time parameter estimation," Electronics and Electrical Enigineering, No. 5(101), pp.3-8, 2010.
  5. Q. Zhang, J. G. Liu, "A new complementary symmetrical structure of using dual magnetic cores for open loop Hall-Effect current sensors," PCIM Europe 2015, Nuremberg, Germany, pp.1904-1911, May 2015.
  6. LEM Co. Product Information [Internet], "Current Transducer HTB 50..400-P/SP5," Available From: http://www.lem.com/hq/en/component/option,com_catalog/task,displaymodel/id,64.04.46.000.0/. (accessed Apr. 20, 2016)
  7. AKM Co. Product Information [Internet], "GaAs Hall Element HG-372A Datasheet," Available From: http://www.akm.com/akm/en/file/datasheet/HG-372A.pdf. (accessed Apr. 20, 2016)
  8. E. Ramsden, Hall-Effect Sensors, Theory and Application, pp.35-57, Elsevier, 2006.
  9. C. H. Kim, "NTC-thermistor," GoldenBell, 2011, Available From: http://terms.naver.com/entry.nhn?docId=1982027&ref=y&cid=42331&categoryId=42334#_179. (accessed May 20, 2016) DOI: http://dx.doi.org/10.1016/B978-075067934-3/50004-1