• 제목/요약/키워드: current conveyors

검색결과 16건 처리시간 0.041초

Current-Mode Electronically Tunable Universal Filter Using Only Plus-Type Current Controlled Conveyors and Grounded Capacitors

  • Minaei, Shahram;Turkoz, Sait
    • ETRI Journal
    • /
    • 제26권4호
    • /
    • pp.292-296
    • /
    • 2004
  • In this paper we present a new current-mode electronically tunable universal filter using only plus-type current controlled conveyors (CCCII+s) and grounded capacitors. The proposed circuit can simultaneously realize lowpass, bandpass, and highpass filter functions - all at high impedance outputs. The realization of a notch response does not require additional active elements. The circuit enjoys an independent current control of parameters $\omega_0$ and $\omega_0/Q$. No element matching conditions are imposed. Both its active and passive sensitivities are low.

  • PDF

전류운송기를 이용한 비접지 L과 FDNR의 새로운 실현 회로 (New Ralization Circuits of Floating L and FDNR by Using Current Conveyors)

  • 박종연;이명기
    • 산업기술연구
    • /
    • 제13권
    • /
    • pp.59-69
    • /
    • 1993
  • Using two current conveyors with the grounded capacitors and resistors, this paper proposed equivalent circuits which can realize the floating L and the floating FDNR. To find out their characteristics, we experiment with these circuits instead of the floating L of the low-pass filter and the floating FDNR of the high-pass filter respectively. Comparing theoretical values with experimental ones, values of the proposed floating L represent the error of 5 percents in the frequency range from 5 KHz to 25 KHz, and values of the floating FDNR represent the error of 5 percents in the range from 8 KHz to 25 KHz. So the proposed floating L and the FDNR circuits are expected to be implemented with current conveyors of an IC.

  • PDF

RMS Detector of Multiharmonic Signals

  • Petrovic, Predrag B.
    • ETRI Journal
    • /
    • 제35권3호
    • /
    • pp.431-438
    • /
    • 2013
  • This paper presents a new realization of the implicit root-mean-square (RMS) detector, employing three second-generation current conveyors and MOS transistors. The proposed circuit can be applied in measuring the RMS value of complex, periodic signals, represented in the form of the Fourier series. To verify the theoretical analysis, circuit Simulation Program with Integrated Circuit Emphasis simulations and experiment results are included, showing agreement with the theory.

A급 CMOS 전류 콘베이어 (CCII) (Class A CMOS current conveyors)

  • 차형우
    • 전자공학회논문지C
    • /
    • 제34C권9호
    • /
    • pp.1-9
    • /
    • 1997
  • Novel class A CMOS second-generation current conveyors (CCII) using 0.6.mu.m n-well standard CMOS process for high-frequency current-mode signal processing were developed. The CCII consists of a regulated current-cell for the voltage input and a cascode current mirror for the current output. In this architecture, the two input stages are coupled by current mirrors to reduce the current input impedance. Measurements of the fabricated cCII show that the current input impedance is 308 .ohm. and the 3-dB cutoff frequency when used as a voltage amplifier extends beyond 10MHz. The linear dynamic ranges of voltage and current are from -0.5V to 1.5V and from -100.mu.A to +120.mu.A for supply voltage V$\_$DD/ = -V$\_$SS/=2.5V, respectively. The power dissipation is 2 mW and the active chip area is 0.2 * 0.2 [mm$\^$2/].

  • PDF

AB급 CMOS 전류 콘베이어(CCII)에 관한 연구 (A study of class AB CMOS current conveyors)

  • 차형우;김종필
    • 전자공학회논문지C
    • /
    • 제34C권10호
    • /
    • pp.19-26
    • /
    • 1997
  • Novel class AB CMOS second-generation current conveyors (CCII) using 0.6.mu.m n-well CMOS process for high-frequency current-mode signal processing were developed. The CCII for low power operation consists of a class AB push-pull stage for the current input, a complementary source follower for the voltage input, and a cascode current mirror for the current output. In this architecture, the two input stages are coupled by current mirrors to reduce the current input impedance. Measurements of the fabricated CCII show that the current input impedance is 875.ohm. and the bandwidth of flat gain when used as a voltage amplifier extends beyond 4MHz. The power dissipation is 1.25mW and the active chip area is 0.2*0.15[mm$\^$2/].

  • PDF

A Realization of Biquadratic Current Transfer Functions Using Multiple-Output CCIIs

  • Higashimura, Masami;Fukui, Yutaka
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.155-158
    • /
    • 2000
  • Circuit configurations for realizing of biquadratic current transfer functions using current conveyors (CCIIs) are presented. The circuits are composed of three multiple-output CCIIs and four passive elements (two resistors and two grounded capacitors), and when current controlled conveyors (CCIIs) in place of CCIIs are employed, the circuit can be realized using three multiple-output CCIIs and two grounded capacitors. Use of grounded capacitors is suitable for integrated implementation. The cutoff frequency of a realized filter with current gain K can be tuned independently of Q by the value of K.

  • PDF

A Versatile Universal Capacitor-Grounded Voltage-Mode Filter Using DVCCs

  • Chen, Hua-Pin;Shen, Sung-Shiou
    • ETRI Journal
    • /
    • 제29권4호
    • /
    • pp.470-476
    • /
    • 2007
  • In this paper, a versatile three-input five-output universal capacitor-grounded voltage-mode filter is proposed. The circuit employs two differential voltage current conveyors as active elements together with two grounded capacitors and four resistors as passive elements. The proposed configuration can be used as either a single-input five-output or three-input two-output. Unlike the previously reported works, it can simultaneously realize five different generic filtering signals: lowpass, bandpass, highpass, bandreject, and allpass. It still maintains the following advantages: (i) the employment of all grounded capacitors, (ii) no need to employ inverting-type input signals, (iii) no need to impose component choice, (iv) orthogonal control of the resonance angular frequency ${\omega}_o$ and the quality factor Q, and (v) low active and passive sensitivity performances.

  • PDF

Power Current Control of a Resonant Vibratory Conveyor Having Electromagnetic Drive

  • Despotovic, Zeljko V.;Ribic, Aleksandar I.;Sinik, Vladimir M.
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.677-688
    • /
    • 2012
  • The vibratory conveyors with electromagnetic drive are used for performing gravimetric flow of granular materials in processing industry. By realizing free vibrations of variable intensity and frequency over a wide range through application of the electromagnetic actuator, suitable power converter, and the corresponding controller, continuous conveyance of granular materials have been provided for various operating conditions. Standard power output stages intended for control of vibratory conveyance using thyristors and triacs. Phase angle control can only accomplish tuning of amplitude oscillations, but oscillation frequency cannot be adjusted by these converters. Application of current controlled transistor converters enables accomplishing the amplitude and/or frequency control. Their use implies the excitation of a vibratory conveyor independent of the supply network frequency. In addition, the frequency control ensures operation in the region of mechanical resonance. Operation in this region is favourable from the energy point of view, since it requires minimal energy consumption. The paper presents a possible solution and advantages of the amplitude-frequency control of vibratory conveyors by means of a current controlled power converter.

Analog Multiplier Using Translinear Current Conveyor

  • Chaikla, Amphawan;Kaewpoonsuk, Anucha;Wangwi-wattana, C.;Riewruja, Vanchai;Jaruvanawat, Anuchit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.80.1-80
    • /
    • 2002
  • In this article, an alternative analog multiplier circuit, using the translinear second-generation current conveyors with the external resistors. The realization method makes use of the inherited translinear loop of the current conveyor offering the positive-supply current that provides in the quartersquare algebraic identity. The proposed circuit operates in voltage mode and it achieves a high accuracy. The PSPICE simulation results confirm that the performances of the proposed multiplier circuit, such as dynamic range and accuracy, are agreed with the theoretical results.

  • PDF

A Resistance Deviation-To-Time Interval Converter Based On Dual-Slope Integration

  • Shang, Zhi-Heng;Chung, Won-Sup;Son, Sang-Hee
    • 전기전자학회논문지
    • /
    • 제19권4호
    • /
    • pp.479-485
    • /
    • 2015
  • A resistance deviation-to-time interval converter based on dual-slope integration using second generation current conveyors (CCIIs) is designed for connecting resistive bridge sensors with a digital system. It consists of a differential integrator using CCIIs, a voltage comparator, and a digital control logic for controlling four analog switches. Experimental results exhibit that a conversion sensitivity amounts to $15.56{\mu}s/{\Omega}$ over the resistance deviation range of $0-200{\Omega}$ and its linearity error is less than ${\pm}0.02%$. Its temperature stability is less than $220ppm/^{\circ}C$ in the temperature range of $-25-85^{\circ}C$. Power dissipation of the converter is 60.2 mW.