• Title/Summary/Keyword: current control error loop

Search Result 91, Processing Time 0.032 seconds

Real Time Digital Control of PWM Inverter for Uninterruptible Power Supply(UPS) application (무정전 전원공급장치 적용을 위한 PWM 인버터의 Digital 실시간 제어)

  • Min, Wan-Ki;Lee, Sang-Hun;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.56-60
    • /
    • 1999
  • This paper presents the high performance real time control system of PWM inverter for uninterruptible power supply(UPS). This system is based on a digital control scheme which calculates the pulse widths of the inverter switches for the next sampling time in digital signal processor(DSP). A PI compensator is used to eliminate the voltage error caused by the difference between the actual values of LC filter and those designed. Double regulation loops which are the inner current loop and the outer voltage loop are used to make the transient response time reduce in load disturbance and nonlinear load. This method makes it possible to obtain better response in comparison to conventional digital control system. The proposed scheme provides good performance such as stable operation, low THD of the output voltage, and good dynamic response for load variations and nonlinear load.

  • PDF

Design and fabrication of a 300A class general-purpose current sensor (300A급 일반 산업용 전류센서의 설계 및 제작)

  • Park, Ju-Gyeong;Cha, Guee-Soo;Ku, Myung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.1-8
    • /
    • 2016
  • Current sensors are used widely in the fields of current control, monitoring, and measuring. They have become more popular with the increasing demand for smart grids in a power network, generation of renewable energy, electric cars, and hybrid cars. Although open loop Hall effect current sensors have merits, such as low cost, small size, and weight, they have low accuracy. This paper describes the design and fabrication of a 300A open loop current sensor that has high accuracy and temperature performance. The core of the current sensor was calculated numerically and the signal conditioning circuits were designed using circuit analysis software. The characteristics of the manufactured open loop current sensor of 300 A class was measured at currents up to 300 A. According to the test of the current sensor, the accuracy error and linearity error were 0.75% and 0.19%, respectively. When the temperature compensation was carried out with the relevant circuit, the temperature coefficients were less than $0.012%/^{\circ}C$ at temperatures between $-25^{\circ}C$ and $85^{\circ}C$.

Design of Sliding-mode Observer for Robust Speed Sensorless Induction Motor Drive

  • Son, Young-Dae;Lee, Jong-Nyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.488-492
    • /
    • 2004
  • In this paper, the design of a speed sensorless vector control system for induction motor is performed by using a new sliding mode technique based on current model flux observer. A current and flux observer based on the current estimation error is constructed. The proposed current observer includes a sliding mode function, which is derivative of the flux. That is, sliding mode observer which allows the estimation of both the rotor speed and flux based on the measurement of motor terminal quantities, would be proposed. And, a synergetic speed controller using the estimated speed signal is designed to stabilize the speed loop. Simulation results are presented to confirm the theoretical analysis, and to show the system performance with different observer gains and the influence of the motor parameter.

  • PDF

A family of Continuous Conduction Mode with Quasi Steady State Approach based on the General Pulse Width Modulator

  • Ala Eldin Abdallah;Khalifa Eltayed
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.369-372
    • /
    • 2002
  • This paper presents a family of continuous conduction mode with constant-switching pulse width modulator controllers. Unified implementation of quasi steady state approach for various DC-DC converters topoiogies is illustrated. The property and control low for quasi-state approach will be discussed in this paper. The different procedures will be discussed in details with different results for five commonly used DC-DC converters. Both trailing and leading edge pulse width modulation are used. Leading edge modulation can some times lead to simpler control circuitry as will be demonstrated in some circuits. These controllers do not require the multiplier in the voltage feed back loop, error amplifier in the current loop and rectified line voltage sensor, which are needed by traditional control methods. Controller examples and design arc analyzed.

  • PDF

Sensorless Control of Non-salient PMSM using Rotor Position Tracking PI Controller (회전자 위치 추정 PI 제어기를 이용한 비돌극형 PMSM 센서리스 제어)

  • Lee Jong-Kun;Seok Jul-Ki;Lee Dong-Choon;Kim Heung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.664-670
    • /
    • 2004
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor (PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system that has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to zero. For zero and low speed operation, PI controller gains of rotor position tracking controller have a variable structure according to the estimated rotor velocity. In order to boost the bandwidth of PI controller around zero speed, a loop recovery technique is applied to the control system. The proposed method only requires the flux linkage of permanent magnet and is insensitive to the parameter estimation error and variation. The designers can easily determine the possible operating range with a desired bandwidth and perform the vector control even at low speeds. The experimental results show the satisfactory operation of the proposed sensorless algorithm under rated load conditions.

Robust Double Deadbeat Control of Single-Phase UPS Inverter (단상 UPS 인버터의 강인한 2중 데드비트제어)

  • 박지호;허태원;안인모;이현우;정재륜;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.65-72
    • /
    • 2001
  • This paper deals with a novel full digital control of the single-phase PWM(Pulse Width Modulation) inviter for UPS(Uninterruptible Power Supp1y). The voltage and current of output filter capacitor as a state variable are the feedback control input. In the proposed scheme a double deadbeat control consisting of minor current control loop and major voltage control loop have been developed In addition, a second order deadbeat currents control which should be exactly equal to its reference in two sampling time without error and overshoot is proposed to remove the influence of the calculation time delay. The load current prediction is achieved to compensate the load disturbance. The simulation and experimental result shows that the proposed system offers an output voltage with THD(Total Harmonic Distortion) less than 5% at a full nonlinear load.

  • PDF

Modulated Finite Control Set - Model Predictive Control for Harmonic Reduction in a Grid-connected Inverter

  • Nguyen, Tien Hai;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.268-269
    • /
    • 2017
  • This paper presents an improved current control strategy for a three-phase grid-connected inverter under distorted grid conditions. Distorted grid condition is undesirable due to negative effects such as power losses and heating problem in electrical equipments. To enhance the power quality of distributed generation systems under such a condition, a modulated finite control set - model predictive control (MFCS-MPC) scheme will be proposed, in which the optimal switching signals of inverter are chosen by online basis using the principle of current error minimization. In addition, the moving average filter (MAF) is used to improve the phase-lock loop in order to obtain the harmonic-free reference currents on the stationary frame. The usefulness of the proposed MFCS-MPC method is proved by the comparative simulation results under different operating conditions.

  • PDF

An Improved Grid Impedance Estimation using PQ Variations (PQ변동을 이용한 개선된 계통 임피던스 추정기법)

  • Cho, Je-Hee;Kim, Yong-Wook;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.152-159
    • /
    • 2015
  • In a weak grid condition, the precise grid impedance estimation is essential to guaranteeing the high performance current control and power transfer for a grid-connected inverter. This study proposes a precise estimation method for grid impedance by PQ variations by employing the variation method of reference currents. The operation principle of grid impedance estimation is fully presented, and the negative impact of the phase locked loop is analyzed. Estimation error by a synchronization angle in the park's transformation using the phase locked loop is derived. As a result, the variation method of reference currents for accurate estimation is introduced. The validation of the proposed method is verified through several simulation results and experiments based on a 2-kW voltage source inverter prototype.

Lyapunov Based Adaptive-Robust Control of the Non-Minimum phase DC-DC Converters Using Input-Output Linearization

  • Salimi, Mahdi;Zakipour, Adel
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1577-1583
    • /
    • 2015
  • In this research, a combined adaptive-robust current controller is developed for non-minimum-phase DC-DC converters in a wide range of operations. In the proposed nonlinear controller, load resistance, input voltage and zero interval of the inductor current are estimated using developed adaptation rules and knowing the operating mode of the converter for the closed-loop control is not required; hence, a single controller can be employed for a wide load and line changes in discontinuous and continuous conduction operations. Using the TMS320F2810 digital signal processor, the experimental response of the proposed controller is presented in different operating points of the buck/boost converter. During transition between different modes of the converter, the developed controller has a better dynamic response compared with previously reported adaptive nonlinear approach. Moreover, output voltage steady-state error is zero in different conditions.

Position Sensorless Control of PMSM Drive for Electro-Hydraulic Brake Systems

  • Yoo, Seungjin;Son, Yeongrack;Ha, Jung-Ik;Park, Cheol-Gyu;You, Seung-Han
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.23-32
    • /
    • 2019
  • This study proposed a fault tolerant control algorithm for electro-hydraulic brake systems where permanent magnet synchronous motor (PMSM) drive is adopted to boost the braking pressure. To cope with motor position sensor faults in the PMSM drive, a braking pressure controller based on an open-loop speed control method for the PMSM was proposed. The magnitude of the current vector was determined from the target braking pressure, and motor rotational speed was derived from the pressure control error to build up the braking pressure. The position offset of the pump piston resulting from a leak in the hydraulic system is also compensated for using the open-loop speed control by moving the piston backward until it is blocked at the end of stroke position. The performance and stability of the proposed controller were experimentally verified. According to the results, the control algorithm can be utilized as an effective means of degraded control for electro-hydraulic brake systems in the case that a motor position sensor fault occurs.