• 제목/요약/키워드: current control

검색결과 11,428건 처리시간 0.033초

SVPWM 방식의 3상 고역율 AC-DC Boost 컨버터 (SVPWM controlled the Three-phase AC to DC Boost Converter for High Power Factor)

  • 나재형;이정효;김경민;이수원;원충연
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 추계학술대회 논문집
    • /
    • pp.327-331
    • /
    • 2008
  • The problems of power factor and harmonics are occurred in converter system which used to SCRs and diodes as power semiconductor devices IGBT was solved that problem, maintain the input line current with sinusoidal wave current of input power source voltage. In this paper, three phase AC to DC boost converter that operates with unity power factor and sinusoidal input currents is presented. The current control of the converter is based on the space vector PWM strategy with fixed switching frequency and the input current tracks the reference current within one sampling time interval. Space vector PWM strategy for current control was materialized as a digital control method. By using this control strategy low ripples in the output voltage, low harmonics in the input current and fast dynamic responses are achieved with a small capacitance in the dc link.

  • PDF

3상 PWM 컨버터의 전류제어기 비교에 관한 연구 (A study on Current Controller Comparision for Three-phase PWM Converter)

  • 한홍일;함년근;성낙규;김길동;김대균;한경희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1248-1250
    • /
    • 2000
  • The aim of this paper is to present a review of recently used current control technique for three-phase voltage source pulse-width modulated converters. Various technique, different in concept, three current control methods are presented in this paper. Current -control methods to be applied in system are PI controller. Predictive current controller. Minimum-time current controller respectively. In initial state and transient state, the response characteristics of three current control methods are verified through simulations.

  • PDF

미세전류치료가 퇴행성 무릎관절염 환자의 통증과 균형에 미치는 영향 (Micro-current Treatment Effects on Pain, Balance of the Degenerative Knee Arthritis)

  • 정준성;조남정
    • 대한통합의학회지
    • /
    • 제3권2호
    • /
    • pp.9-16
    • /
    • 2015
  • Purpose: The purpose of this research was to ascertain the effect of Micro-current on a pain, balance, of knee joint in the patients with degenerative arthritis. Method: The 30 subjects who had micro-current in this research and randomly assigned into two group, an experiment group and a control group. micro-current was applied to 15 subject in the experiment group after general physical therapy. experiment group was applies general therapies and micro-current stimulation. The measurement were analyzed by using SPSS(V.20). In order to compare the post to the amount of pre-changes and post-changes of each group, the paired t-test was used. The difference between the experiment group and the control group was analyzed by using the analysis of convariance. Results: The results of this study were as follows; 1) In VAS measures, the pain point was significantly decreased in both the experimental and the control group. 2) Mc Gill Pain Questionnaire(MPQ), the pain point was significantly decreased in both the experimental and the control group. 3) TUG measures, the second was significantly decreased in both the experimental and the control group. 4) Weight distribution measures, the authority was significantly decreased in both the experimental and the control group. Conclusion: The micro-current is considered a degenerative knee arthritis that can be presented as an effective physical therapy intervention.

Circulating Current Harmonics Suppression for Modular Multilevel Converters Based on Repetitive Control

  • Li, Binbin;Xu, Dandan;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1100-1108
    • /
    • 2014
  • Modular multilevel converters (MMCs) have emerged as the most promising topology for high and medium voltage applications for the coming years. However, one particular negative characteristic of MMCs is the existence of circulating current, which contains a dc component and a series of low-frequency even-order ac harmonics. If not suppressed, these ac harmonics will distort the arm currents, increase the power loses, and cause higher current stresses on the semiconductor devices. Repetitive control (RC) is well known due to its distinctive capabilities in tracking periodic signals and eliminating periodic errors. In this paper, a novel circulating current control scheme base on RC is proposed to effectively track the dc component and to restrain the low-frequency ac harmonics. The integrating function is inherently embedded in the RC controller. Therefore, the proposed circulating current control only parallels the RC controller with a proportional controller. Thus, conflicts between the RC controller and the traditional proportional integral (PI) controller can be avoided. The design methodologies of the RC controller and a stability analysis are also introduced. The validity of the proposed circulating current control approach has been verified by simulation and experimental results based on a three-phase MMC downscaled prototype.

Current Mode Integrated Control Technique for Z-Source Inverter Fed Induction Motor Drives

  • Thangaprakash, Sengodan;Krishnan, Ammasai
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.285-292
    • /
    • 2010
  • This paper presents a current mode integrated control technique (CM-ICT) using a modified voltage space vector modulation (MSVM) for Z-source inverter (ZSI) fed induction motor drives. MSVM provides a better DC voltage boost in the dc-link, a wide range of AC output voltage controllability and a better line harmonic profile. In a voltage mode ICT (VM-ICT), the outer voltage feedback loop alone is designed and it enforces the desired line voltage to the motor drive. An integrated control technique (ICT), with an inner current feedback loop is proposed in this paper for the purpose of line current limiting and soft operation of the drive. The current command generated by the PI controller and limiter in the outer voltage feedback loop, is compared with the actual line current, and the error is processed through the PI controller and a limiter. This limiter ensures that, the voltage control signal to the Z-source inverter is constrained to a safe level. The rise and fall of the control signal voltage are made to be gradual, so as to protect the induction motor drive and the Z-source inverter from transients. The single stage controller arrangement of the proposed CM-ICT offers easier compensation. Analysis, Matlab/Simulink simulations, and experimental results have been presented to validate the proposed technique.

부하 전류 및 듀티를 보상한 3상 비엔나 정류기의 출력 전압 제어 기법 (DC Link Voltage Controller for Three Phase Vienna Rectifier with Compensated Load Current and Duty)

  • 이승태;임재욱;김학원;조관열;최재호
    • 전력전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.32-39
    • /
    • 2018
  • A new dc link voltage controller for a three-phase Vienna rectifier is proposed in this study. This method uses load current and duty information to control dc link voltage. The load current affects the capacitor current and varies the output voltage. Existing methods do not perfectly consider the load current. By considering load current with duty compensation in the proposed method, the transient response is improved by the load variation regardless of the input voltage. The effectiveness of the proposed method is compared with other control methods when the load changes rapidly using PSIM simulation and experiment.

A Decentralized Optimal Load Current Sharing Method for Power Line Loss Minimization in MT-HVDC Systems

  • Liu, Yiqi;Song, Wenlong;Li, Ningning;Bai, Linquan;Ji, Yanchao
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2315-2326
    • /
    • 2016
  • This paper discusses the elimination of DC voltage deviation and the enhancement of load current sharing accuracy in multi-terminal high voltage direct current (MT-HVDC) systems. In order to minimize the power line losses in different parallel network topologies and to insure the stable operation of systems, a decentralized control method based on a modified droop control is presented in this paper. Averaging the DC output voltage and averaging the output current of two neighboring converters are employed to reduce the congestion of the communication network in a control system, and the decentralized control method is implemented. By minimizing the power loss of the cable, the optimal load current sharing proportion is derived in order to achieve rational current sharing among different converters. The validity of the proposed method using a low bandwidth communication (LBC) network for different topologies is verified. The influence of the parameters of the power cable on the control system stability is analyzed in detail. Finally, transient response simulations and experiments are performed to demonstrate the feasibility of the proposed control strategy for a MT-HVDC system.

전원 전압 왜곡과 주파수 변동 시 단상 PWM 컨버터의 전류 제어 (Current Control of a Single-phase PWM Converter under the Distorted Source Voltage and Frequency Condition)

  • 안창헌;김상훈
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.356-362
    • /
    • 2015
  • This paper presents a current control strategy in the synchronous reference frame for a single-phase PWM converter, which ensures sinusoidal input current control under the distorted source voltage and frequency condition. Given that the distorted source voltage distorts the phase angle for PWM converter control, the input current contains the same harmonics as the source voltage. Aside from the distorted voltage, the variation in source frequency reduces the performance of input current control. To achieve sinusoidal input current control under the distorted source voltage and frequency condition, this paper proposes a compensation strategy of current reference with the distortion component extracted from the phase angle and a detection strategy of frequency variation from the output of a synchronous reference frame phase-lock loop. The experimental results confirm the validity of the proposed method under the distorted source voltage and frequency condition.

부하전류와 듀티를 보상하는 단상 PFC 부스트 컨버터 제어기 설계 (A Study of Design Single Phase Boost Converter Controller for Compensated Load Current and Duty)

  • 임재욱;이승태;백승우;김학원;조관열;최재호
    • 전력전자학회논문지
    • /
    • 제22권6호
    • /
    • pp.527-534
    • /
    • 2017
  • This paper proposes a new DC link voltage controller for a single-phase power factor correction (PFC) boost converter. The load current of the PFC boost converter affects the capacitor current, whereas the load current changes the output voltage. However, previous works that compensate output current have failed to consider the relationship between load current and duty. Thus, they also fail to maintain a constant output voltage if the load fluctuates under the conditions of a non-rated input voltage. By considering the duty in the load current compensation, the proposed method improves the load transient response regardless of the input voltage. To demonstrate its effectiveness, the proposed method is compared with other control methods by conducting PSM simulations and experiments under a rapidly changing load.

Study on a Novel Switching Pattern Current Control Scheme Applied to Three-Phase Voltage-Source Converters

  • Zhao, Hongyan;Li, Yan;Zheng, Trillion Q.
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1563-1576
    • /
    • 2017
  • This paper presents a novel switching pattern current control (SP-CC) scheme, which is applied in three-phase voltage-source converters (VSCs). This scheme can select the optimal output switching pattern (SP) by referring the basic principle of space vector modulation (SVM). Moreover, SP-CC is a method without a carrier wave. Thus, the implementation process is concise and easy. When compared with the conventional hysteresis current control (C-HCC) and the space vector-based hysteresis current control (SV-HCC), the SP-CC has the performances of faster dynamic response of C-HCC and less switching number (SN) of SV-HCC. In addition, it has less harmonic contents in the three-phase current, along with a lower switching loss and a higher efficiency. Moreover, the hysteresis bandwidth and Clarke conversion are not required in the SP-CC. The effectiveness of the presented SP-CC is verified by simulation and experimental test results. In addition, the advantages of the SP-CC, when compared with the C-HCC and SV-HCC, are verified as well.