• Title/Summary/Keyword: current(CT)

Search Result 467, Processing Time 0.025 seconds

Evaluation Technique for Ratio Error and Phase Displacement of Current Transformer Comparator (전류변성기 비교기의 비오차 및 위상오차 평가기술)

  • Kim, Yoon-Hyoung;Han, Sang-Gil;Jung, Jae-Kap;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.437-443
    • /
    • 2008
  • We have developed an evaluation technique for both ratio error and phase displacement of current transformer (CT) comparator by using the precise standard capacitors and resistors. By applying this technique to equivalent circuit of CT comparator evaluation system, we can obtain the calculated and measured ratio errors (or phase displacements) in the CT comparator. Thus we can evaluate ratio errors and phase displacement of CT comparator by comparing the calculated and measured ratio errors (or phase displacements). The method was applied to CT comparator under test with the ratio errors and phase displacement ranges of $0{\sim}{\pm}10%$ and $0{\sim}{\pm}7.5$ crad, respectively. Finally we have compared the ratio error and phase displacement of the CT comparator obtained in this method with specifications of two companies.

The Evaluation of Eye Dose and Image Quality According to The New Tube Current Modulation and Shielding Techniques in Brain CT (두부 CT에서 차폐기법과 새로운 관전류변조기법에 따른 눈의 선량과 화질평가)

  • Kwon, Soonmu;Kim, Jungsu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.5
    • /
    • pp.279-285
    • /
    • 2015
  • The eye of human is a radiation sensitive organ and this organ should be shielded from radiation exposure during brain CT procedures. In the brain CT procedures, bismuth protector using to reduce the radiation exposure dose for eye. But protecting the bismuth always accompanies problem of the image quality reduction including artifact. This study aim is the eye radiation exposure dose and image quality evaluation of the new tube current modulation such as new organ based-tube current modulation, longitudinal-TCM, angular-TCM between shielding scan technique using bismuth and lead glasses. As a result, radiation dose of eye is reduced 25.88% in new OB TCM technique then reference scan technique and SNR new OB TCM is 6.05 higher than bismuth shielding scan technique and lower than reference scan technique. In clinical brain CT, new OB TCM technique will contribute to reduction of radiation dose for eye without decrease of image quality.

An Advanced Algorithm for Compensating the Secondary Current of CTs (개선된 변류기 2차 전류 보상 알고리즘)

  • 강용철;임의재
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.387-392
    • /
    • 2003
  • During a fault the remanent flux in a current transformer (CT) may cause severe saturation of its core. The resulting distortion in the secondary current could cause the mal-operation of a protection relay. This paper proposes an algorithm for compensating for the errors in the secondary current caused by CT saturation and the remanent flux. The algorithm compensates the distorted current irrespective of the level of the remanent flux. The second-difference function of the current is used to detect when the CT first starts to saturate. The negative value of the second-difference function at the start of saturation, which corresponds to the magnetizing current, is inserted into the magnetization curve to obtain the core flux at the instant. This value is then used as an initial flux to calculate the actual flux of the CT during the course of the fault with the secondary current. The magnetizing current is then estimated using the magnetization curve and the calculated flux value. The compensated secondary current can be estimated by adding the magnetizing current to the secondary current. Test results indicate that the algorithm can accurately compensate a severely distorted secondary current signal.

Magnetic Saturation Effect of the Iron Core in Current Transformers Under Lightning Flow

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.97-102
    • /
    • 2017
  • A current transformer (CT) is a type of sensor that consists of a combination of electric and magnetic circuits, and it measures large ac currents. When a large amount of current flows into the primary winding, the alternating magnetic flux in the iron core induces an electromotive force in the secondary winding. The characteristics of a CT are determined by the iron core design because the iron core is saturated above a certain magnetic flux density. In particular, when a large current, such as a current surge, is input into a CT, the iron core becomes saturated and the induced electromotive force in the secondary winding fluctuates severely. Under these conditions, the CT no longer functions as a sensor. In this study, the characteristics of the secondary winding were investigated using the time-difference finite element method when a current surge was provided as an input. The CT was modeled as a two-dimensional analysis object using constraints, and the saturation characteristics of the iron core were evaluated using the Newton-Rhapson method. The results of the calculation were compared with the experimental data. The results of this study will prove useful in the designs of the iron core and the windings of CTs.

Electromotive Force Characteristics of Current Transformer According to the Magnetic Properties of Ferromagnetic Core

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.37-41
    • /
    • 2015
  • The most common structure of the current transformer (CT) consists of a length of wire wrapped many times around a silicon steel ring passed over the circuit being measured. Therefore, the primary circuit of CT consists of a single turn of the conductor, with a secondary circuit of many tens or hundreds of turns. The primary winding may be a permanent part of the current transformer, with a heavy copper bar to carry the current through the magnetic core. However, when the large current flows into a wire, it is difficult to measure its magnitude of current because the core is saturated and the core shows magnetic nonlinear characteristics. Therefore, we proposed a newly designed CT which has an air gap in the core to decrease the generated magnetic flux. Adding the air gap in the magnetic path increases the total magnetic reluctance against the same magnetic motive force (MMF). Using a ferrite core instead of steel also causes the generation of low magnetic flux. These features can protect the magnetic saturation of the CT core compared with the steel core. This technique can help the design of the CT to obtain a special shape and size.

CT compensating algorithm Based on a Digital Signal Processor (DSP를 이용한 변류기 보상 알고리즘)

  • Kang, Yong-Cheol;Lee, Byung-Eun;So, Soon-Hong;Hwang, Tae-Keun;Lee, Ji-Hoon;Cha, Sun-Hee;Kim, Yeon-Hee;Jang, Sung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.255-257
    • /
    • 2005
  • This paper proposes a compensating algorithm of a measurement torrent transformer (CT) using DSP. The core flux is calculated and then magnetizing current is estimated in accordance with the flux-magnetizing current curve. The core loss current is obtained with the core loss resistance and the secondary voltage. The correct secondary current is estimated by adding the exciting current to the measured secondary current. The performance of the proposed algorithm was tested using EMTP generated data. The experiment on the real CT was conducted using the prototype compensated system based on a digital signal processor. The results indicate that the algorithm can increase the accuracy of the measurement CT significantly.

  • PDF

An Algorithm for Detecting CT Saturation (변류기 2차전류의 포화 여부 판단 알고리즘)

  • Gang, Yong-Cheol;Ok, Seung-Hun;Gang, Sang-Hui
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.6
    • /
    • pp.275-278
    • /
    • 2001
  • This paper presents an algorithm for detecting current transformer (CT) saturation. At the instants of beginning (or end) of saturation, as a magnetizing inductance of the core is changed significantly, the shapes of the secondary current are also changed significantly though secondary currents are continuous the instants. At the instants, the second-order of third-order difference of the secondary current has big values. Thus, the third difference of the current is used to detect the beginning/end of CT saturation in this paper. If the magnitude of third-order difference of the secondary current is larger than a threshold value, the CT begins of ends saturation at the instants. The proposed detection method is unaffected by the amount of residual flux. The results of various tests with residual flux from -80% to +80% indicate satisfactory performance of the method.

  • PDF

Parallel Operation of Two Converters using Zero Current Transformer Method (영산변류기 동작 방식을 이용한 2개의 컨버터 병렬 운전)

  • Song, Seung-Chan;Seong, Je-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.256-264
    • /
    • 2000
  • In the conventional method, two CTs have been used to share the load current equally with two converters. A new simle method to find out the current difference between two converters using only one CT as a ZCT is suggested. Two experimental prototype converters were designed and implemented for the evaluation of the load current sharing. The results of experiment show that the newly proposed ZCT method using only one CT could make a good load current sharing than the conventional method required two CT when operating two converters in parallel.

  • PDF

A Current Compensating Algorithm with Small Iron-cored CTs (작은 변류기 사용이 가능한 전류 보상 알고리즘)

  • Kang, Sang-Hee;Kang, Yong-Cheol;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.476-478
    • /
    • 1995
  • The conventional technique to deal with CT saturation is overdimensioning of the core so that CTs can carry up to 20 times the rated current without exceeding 10% ratio correction. However, this not only reduces the sensitivity of relays, but also increases the CT core size in proportion to the expected maximum fault current to avoid CT saturation. This paper presents a technique of estimating the secondary current corresponding to the CT ratio which can reduce the required CT core cross section significantly.

  • PDF

Contamination Characteristics of Polymer Insulator using High Frequency Current Transformer (HF-CT센서를 이용한 고분자애자의 오손특성)

  • Park, Jae-June
    • The Journal of Information Technology
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2005
  • Investigations of high frequency current transformer(HF-CT) waveform characteristics of the surface leakage on kaolin polluted EPDM polymer insulators have been performed. This work is part of a program aimed at examining the potential for HF-CT waveform characteristics analysis to provide information about the environment contaminants and environment condition of polymer insulators. The investigation reported examined the HF-CT waveform characteristics at high frequencies. The use of high frequency measurements for on-line applications reduces electrical inference. This work was peformed utilizing HF-CT to monitor of surface polluted discharge. It was found that HF-CT waveform frequency spectrum, magnitude depend on importantly the duration of the surface discharge activity.

  • PDF