• 제목/요약/키워드: current(CT)

검색결과 467건 처리시간 0.011초

20,000 A 전류변성기 국가표준 시스템 구축 (Establishment of National Standard System for 20.000 A Current Transformer)

  • 정재갑;이상화;강전홍;김명수;김윤형;한상길;한상옥
    • 전기학회논문지P
    • /
    • 제57권1호
    • /
    • pp.6-13
    • /
    • 2008
  • National standard system for calibrating current transformer(CT) up to primary current of 20,000A have been established. The system consists of 20,000 A AC high current source, CT comparator, standard CT, CT under test and CT burden. An AC high current is applied tn the primary windings of both the standard CT and the CT under test, and then the CT comparator measures the ratio error and the phase displacement by comparing the secondary currents of the two transformers. As a validity check for 20,000 A CT calibration system, the comparison with the two national standard institutes(NMIs) has been performed using same CTs. The comparison results of the CTs are consistent with those measured at two NMIs within 0.004 % for ratio error and 0.1 min for phase displacement in the primary current ranges of Ip = 10 - 20,000 A with a secondary current of Is = 5 A.

공극 변류기의 2차 전류 보상 (Compensation for the Secondary Current of an Air-gapped Current Transformer)

  • 강용철;정태영;장성일;김용균;박지연
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.149-154
    • /
    • 2008
  • An air-gapped current transformer(CT) has been used to reduce a remanent flux in the core, particularly in the case of auto-reclosure. However, it causes larger transient, ratio and phase errors than the iron-cored CT because of the small magnetizing inductance. This paper proposes a compensation algorithm for the secondary current of the air-gapped CT during the fault conditions including auto-reclosure as well as in the steady-state. The core flux is calculated from the measured secondary current of the CT and inserted into the hysteresis loop to estimate the exciting current. Finally, the correct current is estimated by adding the measured secondary current to the estimated exciting current. Various test results clearly indicate that the proposed compensating algorithm can improve the accuracy of the air-gapped CT significantly and reduce the required core cross-section of the air-gapped CT significantly.

Phasor Estimation Algorithm Based on the Least Square Technique during CT Saturation

  • Lee, Dong-Gyu;Kang, Sang-Hee;Nam, Soon-Ryul
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.459-465
    • /
    • 2011
  • A phasor estimation algorithm based on the least square curve fitting technique for the distorted secondary current due to current transformer (CT) saturation is proposed. The mathematical form of the secondary current during CT saturation is represented as the scaled primary current with magnetizing current. The information on the scaled primary current is estimated using the least square technique, with the measured secondary current in the saturated section. The proposed method can estimate the phasor of a fundamental frequency component during the saturated period. The performance of the algorithm is validated under various fault and CT conditions using a C400 CT model. A series of performance evaluations shows that the proposed phasor estimation algorithm can estimate the phasor of the fundamental frequency component with high accuracy, regardless of fault conditions and CT characteristics.

편단 CT 포화 고장 발생시 양단 전류 순시치를 이용한 전류차동계전기의 내·외부 고장위치 판별방안 (Discrimination Method of Internal and External Fault of Current Differential Relay using Instantaneous Value of Current in Case of Fault with One end CT Saturation)

  • 이명희;최해술;김철환
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1801-1806
    • /
    • 2012
  • This paper presents a simple and practical method which enables to prevent malfunction of protection relay due to differential current caused by one end CT saturation in case of external fault. This method uses difference of magnitude(instantaneous value) between the both end current just before the occurrence of differential current without a separate method to CT staturation detection. One end CT saturation is simulated by current transformer model using type-96 component and the presented method is verified by using EMTP MODELS with respect to internal and external fault with one end CT staturation. The presented method distinguished rightly bewteen external and internal fault with one end CT saturation. This information can be used to prevent malfunction of current differential protection relay in case of external fault. And this method is not affected by sampling rate and has no calculation burden, so it will be applicable to differential current protection relay with ease.

40,000 A 로고스키 코일 평가 시스템 구축 (Establishment of Evaluation System for 40,000 A Rogowski Coil)

  • 김윤형;한상길;정재갑;강전홍;이상화;한상옥
    • 전기학회논문지P
    • /
    • 제58권2호
    • /
    • pp.202-206
    • /
    • 2009
  • Evaluation system for calibrating Rogowski coiI(RC) up to primary current of 40,000 A have been established. The system consists of 40,000 A AC high current source, current transformer(CT) comparator, standard CT, RC under test, voltage to current convertor(VCC), buffer and CT burden. An AC high current is applied to the primary windings of both the standard CT and the RC under test, and then the CT comparator measures the ratio error and the phase displacement by comparing the secondary current of the standard CT with output current of VCC. For testing of RC, we have evaluated two RCs under test of primary current ranges of 0 A ${\sim}$ 2,000 A and 0 A ${\sim}$ 40,000 A with the accuracy class of 1 %. The extended uncertainty is 0.02 % ${\sim}$ 0.23 % for ratio error and 0.29 min ${\sim}$ 1.93 min for phase displacement in the primary current ranges of 10 ${\sim}$ 40,000 A.

히스테리시스 특성을 고려한 측정용 변류기 2차 전류 보상 알고리즘 (Compensating Algorithm for the Secondary Current of a Measurement CT Considering the Hysteresis Characteristics of the Core)

  • 강용철;정태영;장성일;김용균;소순홍
    • 전기학회논문지
    • /
    • 제56권10호
    • /
    • pp.1709-1714
    • /
    • 2007
  • This paper proposes a compensating algorithm for the secondary current of the measurement current transformer (CT) that removes the effects of the hysteresis characteristics of the iron-core. The exciting current resulting from the hysteresis characteristics of the core causes an error between the primary current and the secondary current of the measurement CT. The exciting current can be decomposed into the magnetizing current and the core loss current. The core loss current is obtained from the measured secondary current and the core loss resistance. The core flux linkage is calculated by integrating the measured secondary current, and then inserted into the flux-magnetizing current curve to obtain the magnetizing current. The exciting current at every sampling interval is obtained by summing the core-loss and magnetizing currents and then added to the measured current to obtain the correct current. The performance of the proposed algorithm is validated under various conditions using EMTP generated data. The results indicate that the proposed algorithm can improve the accuracy of the measurement CT significantly, and thus reduce the size and the cost of the measurement CT.

2차 전압-철손 전류 곡선과 자속-자화 전류 곡선을 고려한 측정용 변류기 2차 전류 보상 알고리즘 (Compensating algorithm for the secondary current of a measurement type CT considering the secondary voltage-core loss current curve and the flux linkage-magnetizing current curve)

  • 강용철;정태영;장성일;김용균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.65-66
    • /
    • 2008
  • This paper proposes a compensating algorithm for the secondary current of the measurement current transformer (CT) that removes the effects of the hysteresis characteristics of the iron-core. The exciting current resulting from the hysteresis characteristics of the core causes an error between the primary current and the secondary current of the CT. The proposed algorithm decomposes the exciting current into the magnetizing current and the core loss current and each of them is estimated. The core loss current is calculated from the secondary voltage and the secondary voltage-core loss current curve. The core flux linkage is calculated and then inserted into the flux-current curve to estimate the magnetizing current. The exciting current at every sampling interval is obtained by summing the core-loss and magnetizing currents and then added to the measured current to compensate the secondary current. The performance of the proposed algorithm is validated under various conditions using EMTP generated data. The test results of the real CT were also included. The results indicate that the proposed algorithm can improve the accuracy of the measurement CT significantly, and thus reduce the size and the cost of the CT.

  • PDF

보상 알고리즘을 적용한 변압기 보호용 전류차동 계전방식 (Current Differential Relaying Algorithm for Power Transformer Protection Operating in Conjunction with a CT Compensating Algorithm)

  • 강용철;박종민;이미선;장성일;김용균;소순홍
    • 전기학회논문지
    • /
    • 제56권11호
    • /
    • pp.1873-1878
    • /
    • 2007
  • Current differential relays may maloperate during magnetic inrush and over-excitation because a significant differential current is produced. To prevent maloperation, the relays adopt some harmonic components included in the differential current. The harmonic restraints may increase the security of a relay but cause the operating time delay of a relay when an internal fault occurs. Moreover, the operating time delay is more increased if a current transformer (CT) is saturated. This paper describes a current differential relaying algorithm for power transformer protection with a compensating algorithm for the secondary current of a CT. The comparative study was conducted with and without the compensating algorithm. The performance of the proposed algorithm was investigated when the measurement CT (C400) and the protection CT (C400) are used. The proposed algorithm can compensate the distorted current of a CT and thus reduce the operating time delay of the relay significantly for an internal fault with CT saturation.

전류변성기 비교측정 장치의 현장 평가기술 (On-Site Evaluation Technique of Current Transformer Comparator System)

  • 정재갑;이상화;권성원;강전홍;김명수
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.926-932
    • /
    • 2007
  • A recently developed methods for on-site calibration of the current transformer (CT) comparator system have been reviewed in the paper. The method utilizes several traveling standards, which consist of the CT, non-reactive standard resistors, wide ratio error CT, and shunt resistors. The traveling CT is used for absolute evaluation of a standard CT belonging to industry. The non-reactive standard resistors and a wide ratio error CT are used for the linearity check of errors in the current comparator. The shunt resistors are used for evaluation of CT burden of industry.

AR 모델 및 LSQ 기반 변류기 2차 전류 복원 기법 (AR Model and LSQ Based Compensation Method for the Saturated Secondary Current of a Current Transformer)

  • 장수영;이동규;강상희
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권6호
    • /
    • pp.221-226
    • /
    • 2006
  • The current flowing though a power line is measured by a current transformer (CT). Since a CT is a kind of transformer, saturation of magnetic flux in the core may occur when a large primary current flows. This saturation makes the secondary current of a CT distorted and causes problems in the protection point of view. Because of the current distortion, a protection relay cannot collect the correct information showing how the primary power system changed. Consequently, the current distortion may cause the mal-operation or operation time delay of protective relay. In this paper, an algorithm based on AR model and LSQ is proposed to compensate the saturated CT secondary currents. Various test results indicate that the proposed algorithm can accurately compensate a severely distorted secondary current and is not affected by remanence.