• Title/Summary/Keyword: curing time

Search Result 1,190, Processing Time 0.035 seconds

TSC characteristics according to curing time and corona degradation in epoxy composites (경화시간 및 코로나 열화에 따른 에폭시 복합체의 열자격 전류특성)

  • 박건호;김영천;황석영;이준웅
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.759-767
    • /
    • 1995
  • This paper examines the electrical properties according to a curing time and a corona degradation in epoxy composites which are used for transformers. To consider these phenomena, the electrets were formed by appling high voltages to five kinds of specimens designed according to a constant mixing rate and then TSC(Thermally Stimulated Current) values at the temperature range of -160-200[>$^{\circ}C$] were measured from a series of experiments. The behaviour of carrier and its possible origins in epoxy composites were studied. Various effects of curing time and electric field on epoxy composites were also investigated.

  • PDF

A STUDY ON THE DEGREE OF CONVERSION OF LIGHT CURING COMPOSITE RESIN ACCORDING TO THE DEPTH OF CURE AND LIGHT CURING TIME (수종 광중합 복합 레진의 중합 깊이와 광조사 시간에 따른 중합률에 관한 연구)

  • Kim, Kyung-Hyun;Kwon, Oh-Sung;Kim, Hyun-Gee;Baek, Kyu-Chul;Um, Chung-Moon;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.35-60
    • /
    • 1997
  • Physical properties of composite resins such as strength, resistance to wear, discoloration, etc, depend on the degree of conversion of the resin components. The clinical behavior of restorative resins varies brand to brand. Part of this variation is associated with the filler and differences in the polymer matrix. The polymer matrix of resins may differ because the involved monomers are dissimilar and because of variation in the catalyst system. The purpose of this study was to evaluate the degree of conversion of the composite resins according to the depth of cure and light curing time. 7mm diameter cylindrical aluminum molds were filled with each of five different hybrid light curing composite resins(Z-100, Charisma, Herculite XRV, Prisma TPH, Veridonfil) on the thin resin films. The molds were 1mm, 2mm, 3mm, 4mm, and 5mm in depth to produce resin films of various heights. Each sample was given 20sec, 40sec, and 60sec illumination with a light source. The degree of conversion of carbon double bonds to single bonds in the resin films was examined by means of Fourier Transform Infrared Spectrometer. The results were obtained as follows; 1. There was difference in the degree of conversion among five light curing composite resins according to the depth of cure for 20sec, 40sec, and 60sec illumination with light source with statistical significance(P<0.05). 2. Five light curing composite resins show lower degree of conversion at surface of the resin than depth of 1mm. 3. The degree of conversion of five light curing composite resins was siginificantly reduced from the maximum for the resin film when the light passed through as little as 1mm of each composite. 4. The degree of conversion of five light curing composite resins decrease significantly at the depth of 4mm, and polymerization was not occured at the depth of 5mm except for Prisma TPH. 5. The degree of conversion of five light curing composite resins was increased with increased light curing time, and there was no significant differences in the degree of conversion above 4mm in Z-100, 3mm in Charisma, and at depth of 5mm in Herculite XRV and Veridonfil(P>0.05).

  • PDF

A Study on Development of Curing Apparatus for In-place Standard Curing Specimen (현장 표준양생 공시체 관리함의 개발에 관한 연구)

  • 김경민;전충근;손성운;김기철;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.97-100
    • /
    • 2004
  • In-place curing box for specimens is used to cure the compressive strength specimens for control in place concrete. The box if composed of insulating chamber maintaining 20$\pm$3$^{\circ}C$ of temperature, in this paper, strength and temperature history of specimens cured at in plate curing box are investigated to verify field applicability. According to test results, air temperature at measured time shows large temperature variation and below zero, whereas, inside temperature of in place curing box maintains within 20$\pm$3$^{\circ}C$ due to temperature control function. For curing condition. temperature of specimens cured at outside shows large temperature deviation. specimens lured at in-place curing box is not affected by outer temperature.

  • PDF

Evaluation of the Changes in Polymerization of TheraCal LC with Various Light-curing Time and Distance (광중합 시간과 거리의 변화에 따른 TheraCal LC의 중합도 평가)

  • Bae, Sangyong;Lee, Jewoo;Ra, Jiyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.4
    • /
    • pp.392-399
    • /
    • 2019
  • The purpose of this study was to evaluate polymerization of TheraCal LC, one of the tricalcium silicate cements. To measure the Vickers hardness number (VHN), the specimens were cured at different light curing time and distance. As a result, the VHN of the upper surface was significantly higher than the lower surface's in all groups (p < 0.05). The VHN of the lower surface was increased significantly with the increase of the light curing time in all distance (p < 0.05). When the distance was more than 4.0 mm at all light curing time, the VHN of lower surface was significantly decreased (p < 0.05). When the specimen was light cured for 20 seconds, the VHN of the lower surface did not exceed 2, which corresponds to 10% of the upper surface's. These results suggested that the 20 second light curing time was not sufficient to polymerize the lower surface under specific conditions and that light-curing time should be increased.

Engineering Characteristics of Soil-Lime or Cement Mixtures on the Curing Conditions (양생조건에 따른 생석회 혼합토의 공학적 특성)

  • 민덕기;황광모;이완진;최영철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.305-312
    • /
    • 2002
  • To estimate the effects of lime and cement on the surplus soil, the engineering properties of the marine deposited clay and the fresh water clay were analyzed. The specimen were prepared under several curing conditions, namely, underwater curing, wet condition curing and underwater curing after heating. Unconfined compression strength were estimated after 7, 14, 28 and 60 days, respectively. The strength were steeply increased with time until first 14 days. Specially the increase of the strength of the heated soil were large.

  • PDF

COMPARISON OF THE DECREE OF CONVERSION IN LIGHT-CURED COMPOSITE RESIN CURED BY HALOGEN AND PLASMA XENON ARC LAMP CURING UNIT (Halogen lamp 광조사기와 Plasma xenon arc lamp 광조사기에 의한 광중합 복합레진의 중합률 비교)

  • Lee, Young-Jun;Jeong, Byung-Cho;Choi, Nam-Ki;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.3
    • /
    • pp.328-336
    • /
    • 2002
  • Recently, new light curing unit utilizing the plasma xenon arc lamp is introduced. This curing unit is operated at relatively high intensity, so shortening the curing time significantly. The aim of this experiment was to estimate curing capability of plasma xenon arc lamp curing unit compared to traditional halogen lamp curing unit. Degree of conversion was evaluated by Raman spectroscopy after irradiation of specimens with halogen lamp curing unit(Optilux 150, Demetron, USA) for 20s, 40s, 60s and plasma xenon arc lamp curing unit(flipo, Lokki, France) for 2s, 3s, 6s. The results showed that strong light intensity of plasma xenon arc lamp curing unit did not compensate for short exposure time completely. So, Multi-layered curing within 2mm thickness and additional exposure time is recommanded when light-cured composite resin is polymerized with plasma xenon arc lamp curing unit.

  • PDF

Evaluation of Domestic Tack-Coating Material's Properties for Asphalt Concrete Pavement (국내 아스팔트 콘크리트 포장용 택코팅제의 기초물성 평가)

  • Lee, Jaejun;Kim, Seung-Hoon;Lim, Jaekyu;Han, Jongmin;Lee, Kwang-Joon
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.121-128
    • /
    • 2014
  • PURPOSES : The objective of this study is to evaluate the tack-coating material's properties using the bitumen bond strength(BBS) test and damping test as function of changed curing times. In this study, bonding strength tests were performed according to the curing time of tack coating materials. METHODS : In order to investigate bonding characteristic of tack coating materials, the Pneumatic Adhesion tensile Testing Instrument(PATTI) device is used to measure the bond strength between the tack coating materials and aggregate substrate based on the AASHTO TP-91. Also, damping test as in situ test was used to determine an appropriate traffic openting time for construction vehicle. Four different tack-coating materials were used in this study. The BBS tests were performed a one hour curing and testing temperatures of $5^{\circ}C$, $15^{\circ}C$, and $25^{\circ}C$. Damping test was conducted at 30min, 60min, 90min, and 120 min of curing times with temperatures of $20^{\circ}C$ and $30^{\circ}C$. RESULTS and CONCLUSIONS : The BBS test results show various bond strength as function of tack coat materials. At the same testing condition, A tack coat material shows almost two times higher than D tack coat materials although both materials are satisfied the criteria of material's physical properties. Also, Dampting test results shows similar trend with BBS test result. The damping test result was significantly changed as function of tack coat materials. Based on this study, the tack coating material's curing time is very important. Therefore, both curing time and the bond strength's characteristic has to be considered in standard specification.

Evaluating the accuracy (trueness and precision) of interim crowns manufactured using digital light processing according to post-curing time: An in vitro study

  • Lee, Beom-Il;You, Seung-Gyu;You, Seung-Min;Kim, Dong-Yeon;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.2
    • /
    • pp.89-99
    • /
    • 2021
  • PURPOSE. This study aimed to compare the accuracy (trueness and precision) of interim crowns fabricated using DLP (digital light processing) according to post-curing time. MATERIALS AND METHODS. A virtual stone study die of the upper right first molar was created using a dental laboratory scanner. After designing interim crowns on the virtual study die and saving them as Standard Triangulated Language files, 30 interim crowns were fabricated using a DLP-type 3D printer. Additively manufactured interim crowns were post-cured using three different time conditions-10-minute post-curing interim crown (10-MPCI), 20-minute post-curing interim crown (20-MPCI), and 30-minute post-curing interim crown (30-MPCI) (n = 10 per group). The scan data of the external and intaglio surfaces were overlapped with reference crown data, and trueness was measured using the best-fit alignment method. In the external and intaglio surface groups (n = 45 per group), precision was measured using a combination formula exclusive to scan data (10C2). Significant differences in accuracy (trueness and precision) data were analyzed using the Kruskal-Wallis H test, and post hoc analysis was performed using the Mann-Whitney U test with Bonferroni correction (α=.05). RESULTS. In the 10-MPCI, 20-MPCI, and 30-MPCI groups, there was a statistically significant difference in the accuracy of the external and intaglio surfaces (P<.05). On the external and intaglio surfaces, the root mean square (RMS) values of trueness and precision were the lowest in the 10-MPCI group. CONCLUSION. Interim crowns with 10-minute post-curing showed high accuracy.

A Study on the Mix Design and the Control System of Thermal Crack for High Quality Mass Concrete (고품질 매스콘크리트 시공을 위한 배합설계 및 온도균열제어 시스템에 관한 연구)

  • Kim, Sun-Gu;Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.2
    • /
    • pp.174-178
    • /
    • 2001
  • This study was performed to control the thermal crack of the mat footing slab in the multi-purposed buildings. In this study, we executed the mixing design of concrete to satisfy the workability and the quality according to the site conditions. And, we evaluated quantitatively about the possibility of thermal crack by using hydration heat analysis system. Finally, we proposed the optimal mixing conditions, curing methods and curing period which all factors are considered. As a result, the optimal mixing conditions were : W/B 41%, unit binder 375kgf/$\textrm{m}^3$, FA replacement ratio 20%. Lowest thermal stress was 22.0kgf/$\textrm{cm}^2$ and at that time thermal crack index was over 1.5, when the coefficient of thermal conductivity was lowest among the curing conditions. And, the total curing time was estimated at 6.7 days according to curing steps.

  • PDF

A Study on the Mix Design and the Control of Thermal Crack of Mass Concrete (매스콘크리트의 배합설계 및 온도균열제어에 관한 연구)

  • Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.533-538
    • /
    • 2001
  • This study was peformed to control the thermal crack of the mat footing slab in the multi-purposed buildings. In this study, we executed the mixing design of concrete to satisfy the workability and the quality according to the site conditions. And, we evaluated quantitatively about the possibility of thermal crack by using hydration heat analysis system. Finally, we proposed the optimal mixing conditions, curing methods and curing period which all factors are considered. As a results, the optimal mixing conditions were : W/B 41%, unit binder 375kg/$cm^{2}$, FA replacement ratio 20%. Lowest thermal stress was 22.0kgf/$cm^{2}$ and at that time thermal crack index was over 1.5, when the coefficient of thermal conductivity was lowest among the curing conditions. And, the total curing time was estimated at 6.7 days according to curing steps.

  • PDF