• Title/Summary/Keyword: curing shrinkage

Search Result 291, Processing Time 0.031 seconds

Influence of Curing Condition on Drying Shrinkage of Concrete (초기 양생조건에 따른 콘크리트의 건조수축 특성)

  • 하재담;김태홍;유재상;이종열;배수호;권영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.277-280
    • /
    • 2003
  • Material, mix proportion, curing condition, temperature, humidity and wind velocity have an influence on drying shrinkage of concrete. In this paper, to evaluate the effect of curing condition at early age on the drying shrinkage of concrete was investigated varying curing age for different binder. The principal conclusions from this research were as follows: 1) In case of 14 days of water curing, the drying shrinkage of concrete is smaller than 7 days of water curing, independence of type of binder. 2) In case of 4 days of water curing, the ratio of increase of drying shrinkage of concrete using fly-ash and slag powder is more remarkable than using portland cement alone, comparing the drying shrinkage of 7 days of water curing.

  • PDF

An Experimental Study on Shrinkage of High Strength Concrete with Mineral Admixture (혼화재 사용에 따른 고강도 콘크리트의 수축에 관한 실험적 연구)

  • Lee, Young-Jae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.2
    • /
    • pp.99-106
    • /
    • 2010
  • The effects of additive and shrinkage reducing agent on the drying and autogenous shrinkage of high strength concrete are investigated in this study. As results, when the ratio of W/B(low water to binder ratio) increase, the compressive strength is decreased. Comparing with PC(portland cement) concrete, the strength is 2.8%, 3.2% and 3.8% lower respectively than that of PC when concrete mixing ratio is 0.2%, 0.3% and 0.4% in 28 days curing. Drying shrinkage strain of PC concrete showed $-650{\times}10^{-6}$ in 91 days curing. When SR(shrinkage reducing agent) of 0.2%, 0.3% and 0.4% is mixed, the drying shrinkage strains are 21%, 34% and 41% lower than those of PC in 91 days curing. Autogenous shrinkage strain of PC concrete appeared $-480{\times}10^{-6}$ in 56 days curing. When SR of 0.2%, 0.3% and 0.4% is mixed, the autogenous drying shrinkage strain are 12.5%, 19.8% and 33.3% lower than those of PC in 56 days curing. In cases of using the mineral and shrinkage agent or only using a shrinkage reducing agent also appeared same reducing effects for drying shrinkage and autogenous shrinkage.

  • PDF

Shrinkage Properties of Ultra High Strength Steel Fiber Reinforced Concrete (초고강도 강섬유보강 콘크리트의 수축특성)

  • Koh Kyoung Taek;Pei Chang Chun;Lee Gun Cheol;Kang Soo Tae;Kim Sung Wook;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.647-650
    • /
    • 2005
  • This paper is to investigate the shrinkage properties of ultra high strength concrete(UHSC) incorporating $5\%$ of expansive additives(EA) along with $1\%$ of shrinkage reducing agent(SRA). UHSC subjected to steam curing and incorporated with steel fiber exhibited higher compressive strength than control UHSC by as much as50MPa at 7days, while at 28days, noticeable change in compressive strength was not observed between UHSC mixtures. Control UHSC subjected to steam curing had a $922{\times}10^6$ of autogenous shrinkage strain value, which was 6.7 times of drying shrinkage strain value at 42 days. The combination of EA and SRA resulted in a decrease in autogenous shrinkage by as much as half of control mixture. Steam curing contributed to the reduction of autogenous shrinkage by as much as $11\%$ compared with that of standard curing.

  • PDF

Characteristics of polymerization in nanofiller-containing composite resins (나노필러를 포함하고 있는 복합레진의 중합특성)

  • Lee, Hee-Kyung
    • Journal of Technologic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.9-15
    • /
    • 2007
  • As the development of nanotechnology, the use of composite resins which containing nanofillers becomes popular. The purpose of this study was to test the degree of polymerization of nanofillercontaining composite resins. For the study, three different nanofiller-containing composite resins and two different light-curing units were used. To evaluate the degree of polymerization, the maximum polymerization shrinkage taking place during the light curing, and the microhardness, after the light curing, were measured. As results, two light-curing units exhibited a similar emission spectrum to that of the included photoinitiator, camphorquinone. The only difference between the light-curing units were the width of the emission spectrum. Three different composite resins showed different microhardness values. Among them, Grandio showed the greatest microhardness value. However, there was less microhardness difference on the top and bottom surfaces due to the difference of the light-curing units. The maximum polymerization shrinkage values were also similar in the tested specimens regardless of the difference of the light-curing units. However, Grandio showed the least polymerization shrinkage. According to the manufacturers' data, Grandio showed the highest filler content(vol%).

  • PDF

THE EFFECT OF ADHESIVE CURING TIMING ON THE DIRECTION OF POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN (상아질 접착제의 중합 시간 조절에 따른 복합레진의 중합 수축 방향의 변화)

  • 배지현;오명환;김창근;손호현;엄정문;조병훈;권혁춘
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.4
    • /
    • pp.316-325
    • /
    • 2001
  • The purpose of this study was to evaluate the effect of adhesive curing timing on the direction of polymerization shrinkage of light-curing composite resin. In this study, the curing times of adhesive and composite resin were measured by differential scanning calorimeter(DSC). 28 extracted human molars were embedded in clear resin and box-type cavities were prepared. Based on DSC data, the experimental teeth were divided into 4 groups. Group 1: no bond; Group 2: late curing; Group 3: Intermediate curing; Group 4: Early curing. After treating with adhesive, the buccal cavities were filled with Z-100 hybrid composite resin and the lingual ones were filled with AEliteflo flowable composite resin. The depressions at the surface were measured by surface profilometer, then the specimens were embedded in clear resin and sectioned. Impressions were obtained and used to get epoxy resin replicas. The epoxy replicas were gold-coated and observed under SEM. Average Maximum Gap(AMG), Gap Proportion(GP), Average Marginal Index(AMI) were used to compare the shrinkage gap of each group. The results were statistically analyzed using the Kruskal-Wallis One Way ANOVA, Student-Newman-Keuls method. The results of this study were as follows. 1. Average Maximum Gap, Gap Proportion, Average Marginal Index and depression at the surface or Z-100 hybride composite resin were smaller than those of AEliteflo flowable composite resin(P<0.05). 2. When the bonding between composite resin and tooth structure was strong, the shrinkage gap was small, and depression at the surface was deep(P<0.05). 3. In the well-bonded group, light-curing composite resin shrank toward bonded cavity wall, not toward light source. The result suggested that the direction of polymerization shrinkage was affected by the quality of bonding in the dentin-resin interface. The strong was the bonding between composite resin and tooth structure, the smaller was the gap and the deeper was the depression at the surface. Then the flow to compensate the polymerization shrinkage proceeded from surface to bonded cavity wall.

  • PDF

A STUDY OF CONTRACTION SHRINKAGE OF COMPOSITE RESINS AND ORMOCERS WITH VARIOUS CURING TIMES (광조사 시간에 따른 복합레진과 Ormocer의 중합수축에 관한 연구)

  • Chung, Yeon-Chung;Min, Kyung-San;Lee, Hae-Hyoung;Cho, Kyung-Mo;Cho, Yong-Bum
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.4
    • /
    • pp.326-333
    • /
    • 2003
  • Ormocer has organic-inorganic compound polymers. One of advantages of ormocer is reduced polymerization shrinkage. The purpose of this study was to compare the amount of contraction shrinkage of composite resins and ormocers. Additionally, the time of each material when there is no further change of contraction shrinkage was analysed. Four brands of composite resins (P-60. Surefil, Z-250 and Denfil) and two brands of ormocers (Definite and Admira) were used. 20 seconds, 40 seconds and 60 seconds of curing times were given. Contraction shrinkage of them were measured using a linometer for 80 seconds. The effect of material and curing time to contraction shrinkage at the time of 80 seconds was analysed by two-way ANOVA. The effect of time to contraction shrinkage was analysed by one-way ANOVA and the time when there was no further change of the contraction shrinkage was analysed. The results are as follows: 1. P-60, Definite, Z-250 and Denfil had no further change of contraction shrinkage from the time of 20 seconds, and Surefil and Admira had no further change of contraction shrinkage from the time of 10 seconds. 2. Statistical analysis revealed volumetric shrinkage varied among material (p<0,05). No significant difference of contraction shrinkage among different curing times was found, and there was no effect of interaction between materials and curing times to contraction shrinkage. 3. Definite and Admira showed the statistically same contraction shrinkage with those of Z-250 and P-60. which is higher than that of Surefil and lower than that of Denfil (p<0.05).

Effect of Steam Curing on Concrete Piles with Silica Fume

  • Yazdani, N.;F. Asce, M. Filsaime;Manzur, T.
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • Silica fume is a common addition to high performance concrete mix designs. The use of silica fume in concrete leads to increased water demand. For this reason, Florida Department of Transportation (FDOT) allows only a 72-hour continuous moist cure process for concrete containing silica fume. Accelerated curing has been shown to be effective in producing high-performance characteristics at early ages in silica-fume concrete. However, the heat greatly increases the moisture loss from exposed surfaces, which may cause shrinkage problems. An experimental study was undertaken to determine the feasibility of steam curing of FDOT concrete with silica fume in order to reduce precast turnaround time. Various steam curing durations were utilized with full-scale precast prestressed pile specimens. The concrete compressive strength and shrinkage were determined for various durations of steam curing. Results indicate that steam cured silica fume concrete met all FDOT requirements for the 12, 18 and 24 hours of curing periods. No shrinkage cracking was observed in any samples up to one year age. It was recommended that FDOT allow the 12 hour steam curing for concrete with silica fume.

Mechanical Properties and Autogenous Shrinkage of Ultra High Performance Concrete Using Expansive Admixture and Shrinkage Reducing Agent depending on Curing Conditions (팽창재 및 수축저감제를 사용한 초고성능 콘크리트의 양생조건별 역학 및 자기수축 특성)

  • Park, Chun-Jin;Han, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7910-7916
    • /
    • 2015
  • This paper examines the mechanical and autogenous shrinkage characteristics per curing condition of Ultra High Performance Concrete (UHPC) according to the change in the quantities of expansive admixture and shrinkage-reducing agent. In view of the mechanical properties according to the curing condition, all the UHPC specimens that experienced steam curing at $90^{\circ}C$ developed compressive strength higher than 190 MPa, and the specimens that experienced water curing at $20^{\circ}C$ developed compressive strength comparable to that developed at 91 days by the steam-cured specimens. The specimens steam-cured at $90^{\circ}C$ showed high tensile strength of 23.4 MPa whereas slight loss of the tensile strength was observed in those water-cured at 20. Besides, in view of the autogenous shrinkage according to the curing condition, no particular change could be found in the final shrinkage. The compressive strength developed by UHPC according to the use of expansive and shrinkage-reducing agents reached values higher than 190 MPa in case of steam curing at $90^{\circ}C$. Shrinkage reduced by about 45% when using both expansive and shrinkage-reducing agents without difference according to the curing condition.

Volumetric Change of Concrete Subjected to Different Curing Condition (양생 조건에 따른 콘크리트의 체적 변화)

  • Lee Kwang Myong;Lee Hoi Keun;Lee Sung Jin;Baek Biehn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.132-135
    • /
    • 2004
  • High-performance concrete (HPC) may be expected to differ from usual concrete with respect to shrinkage behavior, and it shows high autogenous shrinkage due to the use of very low water-binder ratio (w/b) and various admixtures. Therefore, in order to minimize the shrinkage stress and to ensure the service life of concrete structure, volumetric change of HPC should be understood. In this study, small prisms made of HPC with w/b of 0.32 and blast-furnace slag content of $0\%,\;30\%,\;and\;50\%$ were prepared to measure the volumetric changes such as autogenous shrinkage, drying shrinkage, and swelling under three different curing conditions. It was observed that the concrete cured. sealed condition showed only autogenous shrinkage while the concrete let to dry condition at temperature of $20^{\circ}C$ and relative humidity of $60\%$ during the test period showed both autogenous and drying shrinkage. Moreover, the concrete exposed to dry condition after 2-day water curing swelled and then started to shrink with age. The total shrinkage (autogenous+drying) of this concrete was smaller than that of the concrete cured dry condition, especially at early-age. Therefore, the early-age moisture curing is very effective to control or minimize the volumetric change and its induced stress of HPC.

  • PDF

Effect of the Curing Temperature on Autogenous Shrinkage of the High Strength Mortar incorporating Mineral Admixtures (양생온도가 혼화재 치환 고강도 모르터의 응결 및 자기수축에 미치는 영향)

  • Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.127-133
    • /
    • 2012
  • In this paper, tests were carried out to monitor the effect of the curing temperature on autogenous shrinkage of the high strength cement mortar incorporating silica fume, blast furnace slag and fly ash ranged from 10%~30% by mass of cement. The curing temperatures were varied from $5^{\circ}C$ to $35^{\circ}C$, respectively. According to results, the setting time exhibited to delay with increase of admixture and drop of temperature. As for the effect of curing temperature on autogenous shrinkage, the increase of SF and BS resulted in an increase of autogenous shrinkage, while the use of FA decrease. The higher the curing temperature is, the greater the autogenous shrinkage is. This is due to the accelerated hydration rate of cement. It is found that the maturity does not consider the effect of curing temperature on autogenous shrinkage.

  • PDF