• Title/Summary/Keyword: curing age

Search Result 423, Processing Time 0.032 seconds

The Strength Properties of Concrete according to Curing Method (양생방법에 따른 콘크리트의 강도특성)

  • Jung, Yong-Wook;Lee, Seung-Han;Yun, Yong-Ho;Son, Sang-Hun;Kim, Jeong-Tai
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.545-548
    • /
    • 2006
  • This study has been carried out to examine the properties of concrete according to replacement ratio and curing method of fly ash, in order to increase utilization of it. As the result of experiments, the 7 days of early age strength presented around 20MPa, up to 20% of replacement ratio, which is almost the same strength as non-replacement. However, when the replacement ratio was 30%, the strength was decreased to 16MPa, as 20% reduction compared to the non-replacement condition. In 365 days of long term aging, the strength was 5% higher, up to 20% of the replacement ratio, due to the pozzolanic reaction of fly ash. When the replacement ratio was 30%, it presented similar strength development as the non-replacement condition. Steam curing and autoclave curing increased the short age strength, regardless of the replacement ratio of fly ash; however, they don't have an effect on increasing the 365 days of long term strength. Water curing showed high strength development after 28 days, 51.81MPa, which is around 30% higher than air curing, 38.9MPa, steam curing, 38.6MPa, and autoclave curing, 39MPa. Therefore, water curing was examined as one of the very effective curing methods for developing long term strength of concrete.

  • PDF

Effect of Curing Conditions on the Alkali-Silica Reaction of Synthetic Lightweight Aggregate Concrete (양생조건(養生條件)이 인공경량골재(人工輕量骨材)콘크리트의 알카리-실리카 반응(反應)에 미치는 영향(影響))

  • Kim, Seong Wan;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.18 no.2
    • /
    • pp.140-147
    • /
    • 1991
  • This paper was performed to obtain the data applied to use of synthetic lightweight aggregate concrete affected by alkali silica reaction. The results obtained were summarized as follows : 1. The expansion of each type concrete was increased with increase of curing age, respectively. Also, at the curing age 90 days, the rate of expansion of type A, B, C and D concrete was increased 0.173%, 0.575%, 0.230% and 0.680%, respectively. Specially, the rate of expansion of type D concrete was shown 3.93 times higher than the type A concrete. The cracks width were increased with increase of expansion and at the 0.680% expansion, the maximum width was shown 0.5 mm. 2. The dynamic modulus of elasticity of each type concrete was increased with increase of curing age, respectively. At the curing age 30 days, the highest dynamic modulus of elasticity was showed at each type concrete, respectively. But, it was gradually decreased with increase of curing age at those concrete, respectively. Also, at the curing age A, B, C and D concrete was increased 24.3%, 33.7%, 28.1% and 37.0%, respectively. The rate of loss in type D concrete was shown 1.52 times higher than the type A concrete. 3. The ultrasonic pulse velocity of each type concrete was increased with increase of curing age, respectively. At the curing age 30 days, the highest ultrasonic pulse velocity was showed at each type concrete, respectively. But, it was gradually decreased with increase of curing age at those concrete, respectively. Also, at the curing age 90 days, the percentage loss of ultrasonic pulse velocity of type A, B, C and D concrete was increased 6.4%, 8.7%, 8.5% and 14.2%, respectively. The rate of loss in type D concrete was shown 2.21 times higher than the type A concrete. 4. The relation between dynamic modulus of elasticity and ultrasonic pulse velocity was highly significant. The dynamic modulus of elasticity was increased with increase and decreased with decrease of ultrasonic pulse velocity. Also, the decreasing rate of the dynamic modulus of elasticity was shown 2-7 times higher than the ultrasonic pulse velocity at each age, respectively. 5. The dynamic modulus of elasticity and ultrasonic pulse velocity were decreased with increase of expansion, and the decreasing rates were increased with increase of curing age. The increasing rate of expansion was shown higher than the decreasing rate of dynamic modulus and ultrasonic pulse velocity.

  • PDF

Experimental Study of Strength Development in High Flow Concrete as following of Curing Temperature (초기 재령에서의 양생 온도 조건에 따른 고유동 콘크리트의 조기강도 발현 성상에 관한 실험적 연구)

  • 이도범;김효락;박지훈;최일호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.19-22
    • /
    • 2003
  • This study is carried out (1) checking the development of compressive strength of high flowing concrete at early age, changing water-binder ratio, curing temperature, and type of aggregate, and (2) suggesting basic date that helping cost and schedule plan in future construction. As the result of this study, we find that high curing temperature is effective for the development of compressive strength of concrete at early age on the condition of each water-binder ratio, and after making the compressive prediction formula related to the curing temperature by maturity, the result of the formular is similar to the temperature-compressive strength-age measured data

  • PDF

A Study on the Strength Development Tendencies of Concrete Cores due to the Effect of Age (콘크리트 코어의 재령에 따른 강도 발현 성향에 관한 연구)

  • 권영웅;유재은;신정식;이성용;김민수;박송철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.751-756
    • /
    • 2003
  • This Paper concerns the compressive strength development tendencies of concrete according to their Ages and curing conditions. The test results are on follows; (1) The compressive strength development of concrete appears larger according to the curing conditions under water curing, condition structural curing and field curing conditions. (2) The compressive strength development rate of concrete after 28 days' curing becomes smaller, but the case of lower strength of concrete not.

  • PDF

Strength and Flowing Properties of Cementless Inorganic Complex Using Alkali Accelerator and Meta-kaolin (메타카올린과 알칼리 자극제를 사용한 무시멘트계 무기복합체의 유동특성 및 강도특성 연구)

  • Lee, Kang-Pil;Kim, Sung-Soo;Lee, Yun-Seong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.89-90
    • /
    • 2010
  • As a result of physical characteristics of using meta-kaolin and alkali accelerator, it was found that higher curing temperature density is favorable to strength development at early age and the higher the age is, the higher, most of the compressive strength gets. Also, I was shown that more than atmospheric curing, steam curing was favorable for development of compressive strength. When the temperature of curing temperature was higher, most of the compressive strengths were higher. Thus, based on this study, it was understood that environmental-friendly chemically combined concrete using meta-kaolin and alkali accelerator can be utilized without using cement.

  • PDF

Basic Study on Quality Assurance of Concrete Structure by using Odor Sensor (후각센서 사용에 의한 콘크리트 구조물의 품질평가에 관한 기초적 연구)

  • Shirokado, Yoshitsugu;Kagaya, Makoto;Lee, Sang-Hun
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.42-42
    • /
    • 2010
  • In order to assure the quality of concrete structure in construction process, the odor strength measured by using odor sensor was used to evaluate curing effect. Then, the compressive strength and odor strength in ordinary concrete N were shown in water curing(=standard curing), indoor and outdoor atmospheric curing condition. The difference between odor strength in the standard curing and that in each curing condition was defined as the difference in the odor strength. And the difference in odor strength in slag powder concrete BP cured in water curing(=standard curing) for different period before exposing in outdoor atmosphere in winter season were evaluated at the age of 14 days. A necessity to prolong the moisture curing for the slag powder concrete BP compared with the ordinary concrete N to obtain a required curing effect was shown by measuring the odor strength and long term compressive strength.

  • PDF

Effects of both Subject Age and Onset of Warts Influence for Curing in Ultrasound Treatment (초음파 치료에서 연령과 사마귀 발생시기가 사마귀 치유에 미치는 효과)

  • Lee, Eun-Hwa;Jung, Jae-Kyoung;Hwang, Mi-Kyoung
    • Physical Therapy Korea
    • /
    • v.4 no.2
    • /
    • pp.51-58
    • /
    • 1997
  • The object of this study were twofold, namely, to study on (1) effect of using ultrasound therapy for curing warts (2) any relation between a cure for warts and onset of warts, as well as subject age. Our subjects, composed of 22 people from age 12 to 49, were assigned to two groups, experimental group and control group. We experimented for 8 session on 12 people in the experimental group by using ultrasound therapy to observe any morphological change in the warts or disappearance of a pain. However, we did not cure warts in the other group, control group. The result of the study are as follows. (1) Ultrasound therapy has an effect on curing warts. (2) Neither condition, onset of warts or subject age, had no influence on a cure for warts.

  • PDF

Physical and Mechanical Properties of the Ready Mixed Concrete in Site. (현장에 타설된 레미콘의 물리.역학적 특성)

  • Nam, Ki-Sung;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.177-180
    • /
    • 2002
  • This study is performed to properties of ready mixed concrete (RMC) in site. The unit weight of the B company's RMC is range from $2,308kg/m^3\;to\;2,355kg/m^3$ and that of the J company's RMC is range from $2,288kg/m^3\;to\;2,310kg/m^3$. The compressive strength of B company's RMC of curing age of 7 days is range from $191kgf/cm^2-232kgf/cm^2$ and that of curing age of 28days is $273kgf/cm^2{\sim}306kg/cm^2$. The compressive strength of J company's RMC of curing age of 7 days is range from $151kgf/cm^2{\sim}177kgf/cm^2$ and that curing age of 28 days is range from $215kgf/cm^2{\sim}234kgf/cm^2$. The B and J company's air content is range of $3.2{\sim}5.2%$. The content of Chloride of the Band J company's is range from each $0.026kg/m^3{\sim}0.046kg/m^3\;and\; 0.034kg/m^3{\sim}0.069kg/m^3$, respectively.

  • PDF

Estimation of Setting Time of Cement Mortar combined with Recycled Aggregate Powder and Cement Kiln Dust based on Equivalent Age

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.1
    • /
    • pp.87-97
    • /
    • 2012
  • This paper presents a method of estimating the setting time of cement mortar incorporating recycled aggregate powder (RP) and cement kiln dust (CKD) at various curing temperatures by applying an equivalent age method. To estimate setting time, the equivalent age using apparent activation energy (Ea) was applied. Increasing RP and CKD leads to a shortened initial and final set. Ea at the initial set and final set obtained by Arrhenius function showed differences in response to mixture type. These were estimated to be from 10~19 KJ/mol in all mixtures, which is smaller than those of conventional mixture ranging from 30~50 KJ/mol. Based on the application of Ea to Freisleben Hansen and Pederson's equivalent age function, equivalent age is nearly constant, regardless of curing temperature and RP contents. This implies that the concept of maturity is applicable in estimating the setting time of concrete containing RP and CKD. A high correlation was observed between estimated setting time and measured setting time. A multiregression model was provided to determine setting time reflecting RP and CKD. Thus, the setting time estimation method studied herein can be applicable to concrete incorporating RP and CKD in the construction field.

The Effects of Curing Age and Thickness of Coating Material on the Bond Strength of PCS-Coated Rebar to Cement Concrete (도장재의 양생재령과 도장두께가 PCS 도장철근과 시멘트 콘크리트와의 부착강도에 미치는 영향)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.4
    • /
    • pp.331-339
    • /
    • 2017
  • The purpose of this study is to evaluate the effect of curing age and thickness of coating material on the bond strength of polymer cement slurry(PCS)-coated rebar that can replace epoxy-coated rebar. The test specimens were prepared with two types of cement, two types of polymer dispersion as St/BA and EVA, two polymer-cement ratios, two coating thicknesses and three curing ages, and tested for bond strength test to cement concrete. The flexural behavior of RC beam that is made by optimum conditions such as polymer-cement ratio of 80%, coating thickness of $100{\mu}m$ and curing age of 7 days of PCS recommended from the bond strength test is also conducted. From the test results, The maximum bond strength of PCS-coated rebar at curing age of 7-day and coating thickness of $100{\mu}m$ was about 1.52 and 1.58 times respectively, the strength of plain and epoxy-coated rebar. The ultimate loads of RC beam using PCS-coated rebar were range of 81.1% to 102.3% of that of plain rebar, and 98.4% to 124.1% of that of epoxy-coated rebar. It is apparent that PCS-coated rebar with EVA, curing age at 7-day and $100{\mu}m$ can replace epoxy-coated rebar in construction field.