• Title/Summary/Keyword: curcumin

Search Result 334, Processing Time 0.023 seconds

Theracurmin Ameliorates Cognitive Dysfunctions in 5XFAD Mice by Improving Synaptic Function and Mitigating Oxidative Stress

  • Kim, Jihyun;Kim, Jaehoon;Huang, Zhouchi;Goo, Nayeon;Bae, Ho Jung;Jeong, Yongwoo;Park, Ho Jae;Cai, Mudan;Cho, Kyungnam;Jung, Seo Yun;Bae, Soo Kyung;Ryu, Jong Hoon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.327-335
    • /
    • 2019
  • As the elderly population is increasing, Alzheimer's disease (AD) has become a global issue and many clinical trials have been conducted to evaluate treatments for AD. As these clinical trials have been conducted and have failed, the development of new theraphies for AD with fewer adverse effects remains a challenge. In this study, we examined the effects of Theracurmin on cognitive decline using 5XFAD mice, an AD mouse model. Theracurmin is more bioavailable form of curcumin, generated with submicron colloidal dispersion. Mice were treated with Theracurmin (100, 300 and 1,000 mg/kg) for 12 weeks and were subjected to the novel object recognition test and the Barnes maze test. Theracurmin-treated mice showed significant amelioration in recognition and spatial memories compared those of the vehicle-treated controls. In addition, the antioxidant activities of Theracurmin were investigated by measuring the superoxide dismutase (SOD) activity, malondialdehyde (MDA) and glutathione (GSH) levels. The increased MDA level and decreased SOD and GSH levels in the vehicle-treated 5XFAD mice were significantly reversed by the administration of Theracurmin. Moreover, we observed that Theracurmin administration elevated the expression levels of synaptic components, including synaptophysin and post synaptic density protein 95, and decreased the expression levels of ionized calcium-binding adapter molecule 1 (Iba-1), a marker of activated microglia. These results suggest that Theracurmin ameliorates cognitive function by increasing the expression of synaptic components and by preventing neuronal cell damage from oxidative stress or from the activation of microglia. Thus, Theracurmin would be useful for treating the cognitive dysfunctions observed in AD.

In-vitro Neuroprotective Effect of Aricumin(Turmeric extract) (아리큐민의 In-vitro 신경보호 효과)

  • Yoon, Nam kyu;Kim, Byung Kwon;Ryu, Hyeon yeol;Seo, Bo Seung;Shin, Chang Ho;Kim, Kwan Kyu;Lee, Han Joo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.291-296
    • /
    • 2022
  • This study was conducted on curcumin which had increased bioavailability as a potential AChE inhibitor for the treatment of neurodegenerative diseases. The purpose of this study is to confirm the in vitro neuroprotective effect on Aricumin (turmeric extract). To confirm the neuroprotective effect, AChE inhibition for Aricumin was evaluated, and cell viability was analyzed for HT-22cell, and oxidative stress (glutamate, H2O2)-induced HT-22 cytotoxicity was evaluated. As a result of the change in the AChE inhibition rate of Aricumin (Turmeric extract), it was confirmed that Aricumin at a concentration of 39.06㎍/ml or higher inhibited AChE activity by about 20% and more. And it was confirmed that the cytotoxicity of HT-22 cells induced by oxidative stress (Gluamate 5 mM and H2O2 500 µM) was significantly inhibited from 0.01 to 0.1 mg/ml concentration (p<005). These results suggest that Aricumin (turmeric extract) have potential neuroprotective effects.

Effect of Tumeric (Curcuma longa) on Bile Acid and UDP-glucuronyl Transferase Activity in Rats Fed a High-fat and -cholesterol Diet (울금(Curcuma longa L.)이 고지방·고콜레스테롤 식이 흰쥐에서의 담즙산 및 UDP-glucuronyl transferase 활성에 미치는 영향)

  • Kim, Min-Sun;Chun, Sung-Sik;Kim, Sang-Hun;Choi, Jung-Hwa
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1064-1070
    • /
    • 2012
  • The current study examined the effect of turmeric powder on bile acid and UDP-glucuronyl transferase activity in rats fed a high-fat and -cholesterol diet. Sprague-Dawley male rats weighing $120{\pm}10$ g were randomly assigned to a normal diet group (N group) and a high-fat and -cholesterol diet group (HF group), which was further divided into a high-fat and high-cholesterol with a 2.5% tumeric powder supplement group (TPA group) and 5% turmeric powder-supplemented group (TPB group). Body weight gain and food efficiency ratio were significantly increased in the N group as compared to the HF group, but they were significantly decreased in turmeric-supplemented groups as compared to the HF group. The total serum cholesterol and TG contents of the turmeric-supplemented groups were decreased as compared to those of the HF group. Especially, the TPB group was significantly decreased as compared to the HF group. The serum LDL-cholesterol and AI of the turmeric-supplemented groups were decreased as compared to the HF group. The hepatic triglyceride contents of all groups supplemented with the tumeric powder were significantly decreased as compared to the HF group. The hepatic UDP-glucuronyl transferase activity of the turmeric-supplemented groups was increased as compared to the HF group. In particular, the TPB group was significantly increased as compared to the HF group. The serum total bile acid contents of the turmeric-supplemented groups were increased as compared to the HF group. These results suggest that tumeric has powerful health benefits that are created via UDP-glucuronyl transferase activity, bile acid, and lipid metabolism.

Anti-oxidative and Anti-inflammatory Activities of Fermented Turmeric (Curcuma longa L.) by Rhizopus oryzae (Rhizopus oryzae으로 발효한 울금의 항산화 및 항염효과)

  • Kim, Eun-Ju;Song, Bit-Na;Jeong, Da-Som;Kim, So-Young;Cho, Yong-Sik;Park, Shin-Young
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1315-1323
    • /
    • 2017
  • Turmeric is a rhizomatous herbaceous perennial plant (Curcuma longa (CL)) of the ginger family, Zingiberaceae. A yellow-pigmented fraction isolated from the rhizomes of CL contains curcuminoids belonging to the dicinnamoyl methane group. Curcumin is an important active ingredient responsible for the biological activity of CL. However, CL is not usually used as a food source due to its bitter taste. The present study was designed to determine the effect of the CL fermented by Rhizopus oryzae (FCL) on pro-inflammatory factors such as nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), tumor necrosis factor alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced RAW 264.7 cell line. The cell viability was determined by MTT assay. To evaluate the anti-inflammatory effect of FCL 80% EtOH extracts, IL-6 and $TNF-{\alpha}$ were measured by ELISA kit. Also, the amount of $NO/PGE_2/NF-{\kappa}B$ was measured using the $NO/PGE_2/NF-{\kappa}B$ detection kit and the iNOS/COX-2 expression was measured by Western blotting. The results showed that the FCL reduced NO, $PGE_2$, iNOS, COX-2, $NF-{\kappa}B$, IL-6 and $TNF-{\alpha}$ production without cytotoxicity. These results suggest that FCL extracts may be a developed the functional food related to anti-inflammation due to the significant effects on inflammatory factors.