• Title/Summary/Keyword: cumulative distribution functions

Search Result 74, Processing Time 0.022 seconds

Study on Fire.Explosion Accidents Prediction Model Development of LPG Vaporizer (LPG 기화기의 화재.폭발사고 예측모델개발에 관한 연구)

  • Ko, Jae-Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.28-36
    • /
    • 2010
  • We have garnered 3,593 data of gas accidents reported for 12 years from 1995, and then analyzed the LPG vaporizer accidents according to their types and causes based on the classified database. According to the results the gas rupture has been the most common accident followed by the release, explosion and then fire accidents, the most frequent accident-occurring sub-cause is LPG check floater faults. In addition, we have applied the Poisson Probability Functions to predict the most-likely probabilities of fire, explosion, release and rupture with the LPG vaporizer in the upcoming 5 years. In compliance with Poisson Probability Functions results, in the item which occurs below 3 "LPG-Vaporizer-Fire", in the item which occurs below 5 "LPG-Vaporizer-Products Faults-Check Floater" and the item which occurs below 10 appeared with "LPG-Vaporizer-Products Faults". From this research we have assured the successive database updating will highly improve the anticipating probability accuracy and thus it will play a key role as a significant safety- securing guideline against the gas disasters.

Index of union and other accuracy measures (Index of Union와 다른 정확도 측도들)

  • Hong, Chong Sun;Choi, So Yeon;Lim, Dong Hui
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.4
    • /
    • pp.395-407
    • /
    • 2020
  • Most classification accuracy measures for optimal threshold are divided into two types: one is expressed with cumulative distribution functions and probability density functions, the other is based on ROC curve and AUC. Unal (2017) proposed the index of union (IU) as an accuracy measure that considers two types to get them. In this study, ten kinds of accuracy measures (including IU) are divided into six categories, and the advantages of the IU are studied by comparing the measures belonging to each category. The optimal thresholds of these measures are obtained by setting various normal mixture distributions; subsequently, the first and second type of errors as well as the error sums corresponding to each threshold are calculated. The properties and characteristics of the IU statistic are explored by comparing the discriminative power of other accuracy measures based on error values.The values of the first type error and error sum of IU statistic converge to those of the best accuracy measures of the second category as the mean difference between the two distributions increases. Therefore, IU could be an accuracy measure to evaluate the discriminant power of a model.

Reliability Analysis of Gas Turbine Engine Blades (가스터빈 블레이드의 신뢰성 해석)

  • Lee, Kwang-Ju;Rhim, Sung-Han;Hwang, Jong-Wook;Jung, Yong-Wun;Yang, Gyae-Byung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1186-1192
    • /
    • 2008
  • The reliability of gas turbine engine blades was studied. Yield strength, Young’s modulus, engine speed and gas temperature were considered as statistically independent random variables. The failure probability was calculated using five different methods. Advanced Mean Value Method was the most efficient without significant loss in accuracy. When random variables were assumed to have normal, lognormal and Weibull distributions with the same means and standard deviations, the CDF of limit state equation did not change significantly with the distribution functions of random variables. The normalized sensitivity of failure probability with respect to standard deviations of random variables was the largest with gas temperature. The effect of means and standard deviations of random variables was studied. The increase in the mean of gas temperature and the standard deviation of engine speed increased the failure probability the most significantly.

Uncertainty Assessment of Emission Factors for Pinus densiflora using Monte Carlo Simulation Technique (몬테 카를로 시뮬레이션을 이용한 소나무 탄소배출계수의 불확도 평가)

  • Pyo, Jung Kee;Son, Yeong Mo;Jang, Gwang Min;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.477-483
    • /
    • 2013
  • The purpose of this study was to calculate uncertainty of emission factor collected data and to evaluate the applicability of Monte Carlo simulation technique. To estimate the distribution of emission factors (Such as Basic wood density, Biomass expansion factor, and Root-to-shoot ratio), four probability density functions (Normal, Lognormal, Gamma, and Weibull) were used. The two sample Kolmogorov-Smirnov test and cumulative density figure were used to compare the optimal probability density function. It was observed that the basic wood density showed the gamma distribution, the biomass expansion factor results the log-normal distribution, and root-shoot ratio showd the normal distribution for Pinus densiflora in the Gangwon region; the basic wood density was the normal distribution, the biomass expansion factor was the gamma distribution, and root-shoot ratio was the gamma distribution for Pinus densiflora in the central region, respectively. The uncertainty assessment of emission factor were upper 62.1%, lower -52.6% for Pinus densiflora in the Gangwon region and upper 43.9%, lower -34.5% for Pinus densiflora in the central region, respectively.

An Experimental Analysis of a Probabilistic DDHV Estimation Model (확률적인 중방향 설계시간 교통량 산정 모형에 관한 실험적 해석)

  • Jo, Jun-Han;Kim, Seong-Ho;No, Jeong-Hyeon
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.23-34
    • /
    • 2009
  • This paper is described as an experimental analysis for the probabilistic directional design hour volume estimation. The main objective of this paper is to derive acceptable design rankings, PK factors, and PD factors. In order to determine an appropriate distribution for acceptable design rankings, 12 probability distribution functions were employed. The parameters were estimated based on the method of maximum likelihood. The goodness of fit test was performed with a Kolmogorov-Smirnov test. The Beta General distribution among the probability distributions was selected as an appropriate model for 2 lane roadways. On the other hand, the Weibull distribution is superior for 4 lanes. The method of the inverse cumulative distribution function came up with an acceptable design ranking of design for LOS D. An acceptable design ranking of 2 lanes is 190, while an acceptable design ranking for 4 lanes is 164. The PK factor and PD factor of 2 lanes was elicited for 0.119 (0.100-0.139) and 0.568 (0.545-0.590), respectively. On the other hand, the PK factor and PD factor for 4 lanes was elicited as 0.106 (0.097-0.114) and 0.571 (0.544-0.598), respectively.

Coexistence of RFID and USN Systems in the Frequency Bands 908.5~914MHz (908.5~914MHz 대역에서 RFID와 USN 시스템의 주파수 공유 조건에 관한 연구)

  • Yoon, Hyun-Goo;Kang, Min-Soo;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.647-656
    • /
    • 2008
  • In this paper, we present interference power distribution results when radio frequency identification(RFID) and ubiquitous sensor network(USN) systems share the $908.5{\sim}914MHz$ frequency bands. Average interference powers are obtained by simulation and statistical analysis, respectively. Simulation results are then verified by statistical analysis. According to the number of interferers and the diameter of the protection area, the cumulative density functions(CDFs) of interference power are simulated under the various conditions. From the simulation results, the probability that both USN and RFID systems meet the required maximal interference power levels is 95 % on condition that there are 1 low revered RFID reader and several USN nodes and that the minimum distance between a RFID reader and an USN node is greater than 1 m. Our results can be used as an basic research for coexistence analysis of RFID and USN systems in the $908.5{\sim}914MHz$ frequency bands.

Integration of Kriging Algorithm and Remote Sensing Data and Uncertainty Analysis for Environmental Thematic Mapping: A Case Study of Sediment Grain Size Mapping (지표환경 주제도 작성을 위한 크리깅 기법과 원격탐사 자료의 통합 및 불확실성 분석 -입도분포지도 사례 연구-)

  • Park, No-Wook;Jang, Dong-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.3
    • /
    • pp.395-409
    • /
    • 2009
  • The objective of this paper is to illustrate that kriging can provide an effective framework both for integrating remote sensing data and for uncertainty modeling through a case study of sediment grain size mapping with remote sensing data. Landsat TM data which show reasonable relationships with grain size values are used as secondary information for sediment grain size mapping near the eastern part of Anmyeondo and Cheonsuman bay. The case study results showed that uncertainty attached to prediction at unsampled locations was significantly reduced by integrating remote sensing data through the analysis of conditional variance from conditional cumulative distribution functions. It is expected that the kriging-based approach presented in this paper would be efficient integration and analysis methodologies for any environmental thematic mapping using secondary information as well as sediment grain size mapping.

A Bayesian Approach to Geophysical Inverse Problems (베이지안 방식에 의한 지구물리 역산 문제의 접근)

  • Oh Seokhoon;Chung Seung-Hwan;Kwon Byung-Doo;Lee Heuisoon;Jung Ho Jun;Lee Duk Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.262-271
    • /
    • 2002
  • This study presents a practical procedure for the Bayesian inversion of geophysical data. We have applied geostatistical techniques for the acquisition of prior model information, then the Markov Chain Monte Carlo (MCMC) method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter.

Development of a CAD Based Tool for the Analysis of Landscape Visibility and Sensitivity (수치지형 해석에 의한 가시성 및 시인성의 경관정보화 연구 - CAD 기반의 분석 도구 개발을 중심으로 -)

  • 조동범
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.3
    • /
    • pp.78-78
    • /
    • 1998
  • The purpose of this research is to develop a CAD-based program for data analysis of digital elevation model(DEM) on the aspect of landscape assessment. When handling DEM data as a visual simulation of topographic landscape, it is basic interest to analyze visible area and visualize visual sensitivity distributions. In reference with landscape assessment, more intuitive and interactive visualizing tools are needed, specially in area of visual approach. For adaptability to landscape assessment, algorithmic approaches to visibility analysis and concepts for visual sensitivity calculation in this study were based on processing techniques of entity data control functions used in AutoCAD drawing database. Also, for the purpose of quantitative analysis, grid-type 3DFACE entities were adopted as mesh unit of DEM structure. Developed programs are composed of main part named VSI written in AutoLISP and two of interface modules written in dialog control language(DCL0 for user-oriented interactive usage. Definitions of camera points(view points) and target points(or observed area) are available alternatively in combined methods of representing scenic landscape, scenery, and sequential landscape. In the case of scene landscape(single camera to fixed target point), only visibility analysis in available. And total visibility, frequency of cumulative visibility, and visual sensitivity analysis are available in other cases. Visual sensitivity was thought as view angle(3 dimensional observed visual area) and the strengths were classified in user defined level referring to statistical characteristics of distribution. Visibility analysis routine of the VSI was proved to be more effective in the accuracy and time comparing with similar modules of existing AutoCAD third utility.

Derived I-D-F Curve in Seoul Using Bivariate Precipitation Frequency Analysis (이변량 강우 빈도해석을 이용한 서울지역 I-D-F 곡선 유도)

  • Kwon, Young-Moon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.155-162
    • /
    • 2009
  • Univariate frequency analyses are widely used in practical hydrologic design. However, a storm event is usually characterized by amount, intensity, and duration of the storm. To fully understand these characteristics and to use them appropriately in hydrologic design, a multivariate statistical approach is necessary. This study applied a Gumbel mixed model to a bivariate storm frequency analysis using hourly rainfall data collected for 46 years at the Seoul rainfall gauge station in Korea. This study estimated bivariate return periods of a storm such as joint return periods and conditional return periods based on the estimation of joint cumulative distribution functions of storm characteristics. These information on statistical behaviors of a storm can be of great usefulness in the analysis and assessment of the risk associated with hydrologic design problems.