• Title/Summary/Keyword: cultured wild ginseng roots(CWGR)

Search Result 3, Processing Time 0.015 seconds

Effect of Supplementing Cultured Wild Ginseng Roots in the Diet of Organic Saanen Dairy Goats on Milk Composition and Ginsenoside Profiles in Blood and Milk (유기농 산양유 사료에 산삼배양근 첨가가 산양유와 혈액 내 진세노사이드 함량 및 조성에 미치는 영향)

  • Bae, Gui-Seck
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.3
    • /
    • pp.485-495
    • /
    • 2016
  • The aim of the present study was to determine the effect of dietary cultured wild ginseng root (CWGR) supplementation on goat milk composition and ginsenoside profiles. Sixteen Saanen dairy goats were allocated to two balanced groups based on lactation period, body weight ($38.6{\pm}3.2kg$), and dairy milk yield ($2.85{\pm}1.2kg$), and were kept in separate pens. Goats were fed a total mixed ration (TMR) feed (2.3 kg/d, dry matter basis) and 1.5 g of CWGR powder was supplemented in the experimental diet. The total feeding period was 3 weeks, and milk and blood samples were collected on the last three days of the experimental period. There was no effect of CWGR on daily milk yield and milk composition (fat, protein, lactose, and solid-not-fat). However, the CWGR-treatment group had significantly higher plasma IgG and protein contents than the control group (P < 0.05). Significant amounts of ginsenosides were observed in the milk of the CWGR-treatment group, whereas ginsenosides were not detected in the milk of the control group. In conclusion, dietary CWGR was a useful regimen to produce functional goat milk enriched in ginsenosides.

Effects of Cultured Wild Ginseng Roots on the Alcoholic Fermentation (산삼배양근 첨가가 알콜 발효에 미치는 영향)

  • Jeong Heon-Sang;Kang Tae-Su;Woo Koan-Sik;Paek Kee-Yeoup;Yu Kee-Won;Yang Seung-Joon
    • Food Science and Preservation
    • /
    • v.12 no.4
    • /
    • pp.402-410
    • /
    • 2005
  • In order to manufacture the alcoholic drinks using cultured wild ginseng roots(CWGR) of 5 and $10\%$ (w/v), sugar content of fermentation media was adjusted to 24-25 $^{\circ}$Brix with white sugar and glucose. And 3 kinds of yeast (S. cerevisiae(KCCM 50757), S. cerevisiae (KCCM 50583) and S. bayanus(ATCC 10601) were used and then the quality of alcoholic drinks was analyzed by physical, chemical and sensory evaluation. Alcohol content was highest value of $15.8\%$ in $10\%$ of CWGR, white sugar, and S. bayanus(ATCC 10601). Major alcohols were ethanol and 1-propanol. Number of yeast cells increased to 5 days fermentation and slightly decreased afterwards. The pH was decreased abruptly from 5.0 in initial fermentation to 3.1-4.1 in 5 days fermentation. Total sugar contents were decreased continuously with fermentation periods and showed 7.0-10.5 $^{\circ}$Brix in 20 days fermentation. Saponin patterns and contents were various and higher in wine treated with S. bayanus(ATCC 10601). From the sensory evaluation, the highest score of overall quality was observed in the alcoholic beverage of $10\%$(w/v) of CWGR, glucose, and S. cerevisiae(KCCM 50583).

Antioxidant Properties of Cultured Wild Ginseng Roots Extracts (산삼배양근 추출물의 항산화 특성)

  • Kim, Jae-Won;Lee, Shin-Ho;No, Hong-Kyoon;Hong, Joo-Heon;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.17 no.6
    • /
    • pp.861-866
    • /
    • 2010
  • We obtained hot-water extracts (HWE) and 70% (v/v) ethanol extracts (EE) from cultured wild ginseng roots (CWGR) and determined the saponin and total polyphenol contents, and antioxidant activities. The yields of freeze-dried powder from the HWE and EE were 27.86% and 18.33% (both w/w), respectively. The total polyphenol content of the EE (22.63 mg/g) was higher than that of the HWE (17.90 mg/g). Ginsenoside-Rb1 and -Rg1 contents of hot-air-dried CWGR were 17.90 mg/g and 22.63 mg/g, respectively. The electron-donating ability of HWE and EE were 2.82-60.58% and 3.88?70.88%, respectively, and the reducing powers ($OD_{700}$) were 0.02-0.17 and 0.07-1.90, respectively, at concentrations of 1-20 mg/mL. Thus, the HWE reducing power was markedly lower than that of the EE, but the SOD-like activity of the EE was significantly higher than that of the HWE. The nitrite-scavenging activities of HWE and EE were 9.25-19.18% and 11.94-53.49%, respectively, at concentrations of 1-20 mg/mL. Additionally, the TBARS (Thiobarbituric acid reactive substances, % value) of the EE (1-20 mg/mL) was 9.18-66.59%, thus 1.9-2.8-fold greater than that of the HWE (4.74-24.88%). In conclusion, we provide experimental evidence that extracts of CWGR may be natural antioxidants.