• Title/Summary/Keyword: cultured myocardial cell

Search Result 34, Processing Time 0.018 seconds

The Preventive Effect of 5-Iodo-6-Amino-1,2-Benzopyrone on Apoptosis of Rat Heart-derived Cells induced by Oxidative Stress

  • Kyoumg A Chung;Ji Seung Back;Jae Hyun Jang
    • Biomedical Science Letters
    • /
    • v.28 no.4
    • /
    • pp.237-246
    • /
    • 2022
  • Ischemia-reperfusion results in excess reactive oxygen species (ROS) that affect myocardial cell damage. ROS production inhibition is effectively proposed in treating cardiovascular diseases including myocardial hypertrophy. Studies have shown that oxidizing cultured cells in in vitro experiments gradually decreases the permeability of mitochondrial membranes time- and concentration-dependent, resulting in increased mitochondrial membrane damage due to secondary ROS production and cardiolipin loss. However, recent studies have shown that 5-iodo-6-amino-1,2-benzopyrone (INH2BP), an anticancer and antiviral drug, inhibited peroxynitrite-induced cell damage in in vitro and alleviated partial or overall inflammation in animal experiments. Therefore, in this paper, we studied the preventive effect of INH2BP on H9c2 cells derived from mouse heart damaged by oxidative stress using 700 μM of hydrogen peroxide. As a result of oxidative stress to H9c2 cells by hydrogen peroxide whether the treatment of INH2BP or not, hydrogen peroxide caused serious damage in H9c2 cells. These results were confirmed with cell viability and Hoechst 33342 assays. And this damage was through cell death. However, it was confirmed that H9c2 cells pretreated with INH2BP significantly reduced cell death by hydrogen peroxide. In addition, measurements with DCF-DA assay to determine whether ROS is produced in H9c2 cells treated with only hydrogen peroxide produced ROS significantly, but H9c2 cells pretreated with INH2BP significantly reduced ROS production by hydrogen peroxide. Taken together, it is believed that INH2BP can be useful for the prevention and treatment of cardiovascular diseases induced through oxidative stress such as heart damage caused by ischemia/reperfusion.

In Vivo Protein Transduction: Delivery of PEP-1-SOD1 Fusion Protein into Myocardium Efficiently Protects against Ischemic Insult

  • Zhang, You-en;Wang, Jia-ning;Tang, Jun-ming;Guo, Ling-yun;Yang, Jian-ye;Huang, Yong-zhang;Tan, Yan;Fu, Shou-zhi;Kong, Xia;Zheng, Fei
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.159-166
    • /
    • 2009
  • Myocardial ischemia-reperfusion injury is a medical problem occurring as damage to the myocardium following blood flow restoration after a critical period of coronary occlusion. Oxygen free radicals (OFR) are implicated in reperfusion injury after myocardial ischemia. The antioxidant enzyme, Cu, Zn-superoxide dismutase (Cu, Zn-SOD, also called SOD1) is one of the major means by which cells counteract the deleterious effects of OFR after ischemia. Recently, we reported that a PEP-1-SOD1 fusion protein was efficiently delivered into cultured cells and isolated rat hearts with ischemia-reperfusion injury. In the present study, we investigated the protective effects of the PEP-1-SOD1 fusion protein after ischemic insult. Immunofluorescecnce analysis revealed that the expressed and purified PEP-1-SOD1 fusion protein injected into rat tail veins was efficiently transduced into the myocardium with its native protein structure intact. When injected into Sprague-Dawley rat tail veins, the PEP-1-SOD1 fusion protein significantly attenuated myocardial ischemia-reperfusion damage; characterized by improving cardiac function of the left ventricle, decreasing infarct size, reducing the level of malondialdehyde (MDA), decreasing the release of creatine kinase (CK) and lactate dehydrogenase (LDH), and relieving cardiomyocyte apoptosis. These results suggest that the biologically active intact forms of PEP-1-SOD1 fusion protein will provide an efficient strategy for therapeutic delivery in various diseases related to SOD1 or to OFR.

The optimal model of reperfusion injury in vitro using H9c2 transformed cardiac myoblasts

  • Son, Euncheol;Lee, Dongju;Woo, Chul-Woong;Kim, Young-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.173-183
    • /
    • 2020
  • An in vitro model for ischemia/reperfusion injury has not been well-established. We hypothesized that this failure may be caused by serum deprivation, the use of glutamine-containing media, and absence of acidosis. Cell viability of H9c2 cells was significantly decreased by serum deprivation. In this condition, reperfusion damage was not observed even after simulating severe ischemia. However, when cells were cultured under 10% dialyzed FBS, cell viability was less affected compared to cells cultured under serum deprivation and reperfusion damage was observed after hypoxia for 24 h. Reperfusion damage after glucose or glutamine deprivation under hypoxia was not significantly different from that after hypoxia only. However, with both glucose and glutamine deprivation, reperfusion damage was significantly increased. After hypoxia with lactic acidosis, reperfusion damage was comparable with that after hypoxia with glucose and glutamine deprivation. Although high-passage H9c2 cells were more resistant to reperfusion damage than low-passage cells, reperfusion damage was observed especially after hypoxia and acidosis with glucose and glutamine deprivation. Cell death induced by reperfusion after hypoxia with acidosis was not prevented by apoptosis, autophagy, or necroptosis inhibitors, but significantly decreased by ferrostatin-1, a ferroptosis inhibitor, and deferoxamine, an iron chelator. These data suggested that in our SIR model, cell death due to reperfusion injury is likely to occur via ferroptosis, which is related with ischemia/reperfusion-induced cell death in vivo. In conclusion, we established an optimal reperfusion injury model, in which ferroptotic cell death occurred by hypoxia and acidosis with or without glucose/glutamine deprivation under 10% dialyzed FBS.

Melatonin mitigates the adverse effect of hypoxia during myocardial differentiation in mouse embryonic stem cells

  • Lee, Jae-Hwan;Yoo, Yeong-Min;Lee, Bonn;Jeong, SunHwa;Tran, Dinh Nam;Jeung, Eui-Bae
    • Journal of Veterinary Science
    • /
    • v.22 no.4
    • /
    • pp.54.1-54.13
    • /
    • 2021
  • Background: Hypoxia causes oxidative stress and affects cardiovascular function and the programming of cardiovascular disease. Melatonin promotes antioxidant enzymes such as superoxide dismutase, glutathione reductase, glutathione peroxidase, and catalase. Objectives: This study aims to investigate the correlation between melatonin and hypoxia induction in cardiomyocytes differentiation. Methods: Mouse embryonic stem cells (mESCs) were induced to myocardial differentiation. To demonstrate the influence of melatonin under hypoxia, mESC was pretreated with melatonin and then cultured in hypoxic condition. The cardiac beating ratio of the mESC-derived cardiomyocytes, mRNA and protein expression levels were investigated. Results: Under hypoxic condition, the mRNA expression of cardiac-lineage markers (Brachyury, Tbx20, and cTn1) and melatonin receptor (Mtnr1a) was reduced. The mRNA expression of cTn1 and the beating ratio of mESCs increased when melatonin was treated simultaneously with hypoxia, compared to when only exposed to hypoxia. Hypoxia-inducible factor (HIF)-1α protein decreased with melatonin treatment under hypoxia, and Mtnr1a mRNA expression increased. When the cells were exposed to hypoxia with melatonin treatment, the protein expressions of phospho-extracellular signal-related kinase (p-ERK) and Bcl-2-associated X proteins (Bax) decreased, however, the levels of phospho-protein kinase B (p-Akt), phosphatidylinositol 3-kinase (PI3K), B-cell lymphoma 2 (Bcl-2) proteins, and antioxidant enzymes including Cu/Zn-SOD, Mn-SOD, and catalase were increased. Competitive melatonin receptor antagonist luzindole blocked the melatonin-induced effects. Conclusions: This study demonstrates that hypoxia inhibits cardiomyocytes differentiation and melatonin partially mitigates the adverse effect of hypoxia in myocardial differentiation by regulating apoptosis and oxidative stress through the p-AKT and PI3K pathway.

Effects of Jagamchotang on the Cultured Rat Neonatal Myocardial Cells (자감초탕(炙甘草湯)이 배양심근세포(培養心筋細胞)에 미치는 영향(影響))

  • Lee, Lae-Chun;Cho, Nam-Su;Cho, Dong-Ki;Eom, Sang-Sup;Kang, Sung-Do;Lee, Chun-Woo;Go, Jeong-Soo;Sung, Yeun-Kyung;Lee, Kwan-Hyung;Sung, Ki-Ho;Park, Jun-Su;Ryu, Do-Gon;Moon, Byung-Sun
    • Journal of Oriental Physiology
    • /
    • v.14 no.2 s.20
    • /
    • pp.179-187
    • /
    • 1999
  • To investigate how Jagamchotang provent cellular injury by a certain starting point on reperfusion injury after ischemia in myocardial cell, conducted MTT assay, LM stydy and measured LDH secretion, heart rate and nitric oxide(NO), and got the following results. 1. Jagamchotang did not injure cells even in $20{\mu}g/ml$. 2. Jaganchotang repressed the toxicity of mitochondria and cell membrane in reperfusing after ischemia and repressed the contraction of promontory of myocardial cell and reduction of the number of cells. Also maintained regular heart rate and reduced the number of heart rate. 3. Synthesis of NO by Jagamchotang in ischemia increased 1.9 times than a control. 4. When reperfusing with sodium nitropruside (SNO), NO donor in ischemia repressed the toxicity of mitochondria as the case of reperfusing with Jagamchotang in ischemia. Therefore, putting these findings together, it. can be said the effect of Jagamchotang in ischemia will be closely related with generation of NO.

  • PDF

Protection by Sunghyangchungisan against Oxidative Endothelial Cell Injury (배양(培養)된 혈관(血管) 내피세포(內皮細胞)에서 산화성(酸化性) 세포(細胞) 손상(損傷)에 미치는 성향정기산(星香正氣散)의 보호(保護) 효과(效果))

  • Lee Dong-Uhn;Kim Young-Kyun
    • Herbal Formula Science
    • /
    • v.8 no.1
    • /
    • pp.147-167
    • /
    • 2000
  • Reactive oxygen species (ROS) play an important role in the pathogenesis of a variety of life threatening conditions such as atherosclerosis, myocardial infarction and cerebral stroke. In this study, the effect of Sunghyangchungisan (SHCS) as a cytoproctant against ROS-induced cell injury was studied by investigating its effect on $H_{2}O_2-induced$ cell injury in cultured endothelial cells derived from the human umbilical vein. SHCS effectively proteced the cells against $H_{2}O_2-induced$ injury determined by trypan blue exclusion ability and lactate dehydrogenase (LDH) release. The effect of SHCS was concentration-dependent and the concentrations to inhibit by 50% the cell death and LDH release were $0.9{\pm}0.1$ and $1.2{\pm}0.1\;mg/ml$, respectively. In addition, SHCS effectively protected the cells against t-butylhydroperoside- and menadione-Induced injury as well. SHCS inhibited lipid peroxidation determined by malondialdehyde production. SHCS exerted as an effective scavenger of ROS produced by exposing the cells to $H_{2}O_2$ The activities of the intracellular ROS scavenging enzymes such as superoxide dismutase, catalase and glutathione peroxidase were not Influenced by SHCS.These results indicate that SHCS might exert as an effective cytoprotectant against ROS-induced cell injury. Further intensive studies would provide us insights into mechanisms of the pharmacological actions of SHCS.

  • PDF

Ginseng extracts modulate mitochondrial bioenergetics of live cardiomyoblasts: a functional comparison of different extraction solvents

  • Huang, Yun;Kwan, Kenneth Kin Leung;Leung, Ka Wing;Yao, Ping;Wang, Huaiyou;Dong, Tina Tingxia;Tsim, Karl Wah Keung
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.517-526
    • /
    • 2019
  • Background: The root of Panax ginseng, a member of Araliaceae family, has been used as herbal medicine and functional food in Asia for thousands of years. According to Traditional Chinese medicine, ginseng is the most widely used "Qi-invigorating" herbs, which provides tonic and preventive effects by resisting oxidative stress, influencing energy metabolism, and improving mitochondrial function. Very few reports have systematically measured cell mitochondrial bioenergetics after ginseng treatment. Methods: Here, H9C2 cell line, a rat cardiomyoblast, was treated with ginseng extracts having extracted using solvents of different polarity, i.e., water, 50% ethanol, and 90% ethanol, and subsequently, the oxygen consumption rate in healthy and tert-butyl hydroperoxideetreated live cultures was determined by Seahorse extracellular flux analyzer. Results: The 90% ethanol extracts of ginseng possessed the strongest antioxidative and tonic activities to mitochondrial respiration and therefore provided the best protective effects to H9C2 cardiomyocytes. By increasing the spare respiratory capacity of stressed H9C2 cells up to three-folds of that of healthy cells, the 90% ethanol extracts of ginseng greatly improved the tolerance of myocardial cells to oxidative damage. Conclusion: These results demonstrated that the low polarity extracts of ginseng could be the best extract, as compared with others, in regulating the oxygen consumption rate of cultured cardiomyocytes during mitochondrial respiration.

Endothelin Receptor Overexpression Alters Diastolic Function in Cultured Rat Ventricular Myocytes

  • Kang, Mi-Suk;Walker, Jeffery W.;Chung, Ka-Young
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.386-392
    • /
    • 2012
  • The endothelin (ET) signaling pathway controls many physiological processes in myocardium and often becomes upregulated in heart diseases. The aim of the present study was to investigate the effects of ET receptor upregulation on the contractile function of adult ventricular myocytes. Primary cultured adult rat ventricular myocytes were used as a model system of ET receptor overexpression in the heart. Endothelin receptor type A ($ET_A$) or type B ($ET_B$) was overexpressed by Adenoviral infection, and the twitch responses of infected ventricular myocytes were measured after ET-1 stimulation. Overexpression of $ET_A$ exaggerated positive inotropic effect (PIE) and diastolic shortening of ET-1, and induced a new twitch response including twitch broadening. On the contrary, overexpression of $ET_B$ increased PIE of ET-1, but did not affect other two twitch responses. Control myocytes expressing endogenous receptors showed a parallel increase in twitch amplitude and systolic $Ca^{2+}$ in response to ET-1. However, intracellular $Ca^{2+}$ did not change in proportion to the changes in contractility in myocytes overexpressing $ET_A$. Overexpression of $ET_A$ enhanced both systolic and diastolic contractility without parallel changes in $Ca^{2+}$. Differential regulation of this nature indicates that upregulation of $ET_A$ may contribute to diastolic myocardial dysfunction by selectively targeting myofilament proteins that regulate resting cell length, twitch duration and responsiveness to prevailing $Ca^{2+}$.

Salvianolic Acid B Inhibits Hand-Foot-Mouth Disease Enterovirus 71 Replication through Enhancement of AKT Signaling Pathway

  • Kim, So-Hee;Lee, Jihye;Jung, Ye Lin;Hong, Areum;Nam, Sang-Jip;Lim, Byung-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.38-43
    • /
    • 2020
  • Hand, foot, and mouth disease (HFMD) is caused by enterovirus 71 (EV71) in infants and children under six years of age. HFMD is characterized by fever, mouth ulcers, and vesicular rashes on the palms and feet. EV71 also causes severe neurological manifestations, such as brainstem encephalitis and aseptic meningitis. Recently, frequent outbreaks of EV71 have occurred in the Asia-Pacific region, but currently, no effective antiviral drugs have been developed to treat the disease. In this study, we investigated the antiviral effect of salvianolic acid B (SalB) on EV71. SalB is a major component of the Salvia miltiorrhiza root and has been shown to be an effective treatment for subarachnoid hemorrhages and myocardial infarctions. HeLa cells were cultured in 12-well plates and treated with SalB (100 or 10 ㎍/ml) and 106 PFU/ml of EV71. SalB treatment (100 ㎍/ml) significantly decreased the cleavage of the eukaryotic eIF4G1 protein and reduced the expression of the EV71 capsid protein VP1. In addition, SalB treatment showed a dramatic decrease in viral infection, measured by immunofluorescence staining. The Akt signaling pathway, a key component of cell survival and proliferation, was significantly increased in EV71-infected HeLa cells treated with 100 ㎍/ml SalB. RT-PCR results showed that the mRNA for anti-apoptotic protein Bcl-2 and the cell cycle regulator Cyclin-D1 were significantly increased by SalB treatment. These results indicate that SalB activates Akt/PKB signaling and inhibits apoptosis in infected HeLa cells. Taken together, these results suggest that SalB could be used to develop a new therapeutic drug for EV71-induced HFMD.

PSME4 determines mesenchymal stem cell fate towards cardiac commitment through YAP1 degradation

  • Mira Kim;Yong Sook Kim;Youngkeun Ahn;Gwang Hyeon Eom;Somy Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.407-416
    • /
    • 2023
  • The regeneration of myocardium following acute circulatory events remains a challenge, despite numerous efforts. Mesenchymal stem cells (MSCs) present a promising cell therapy option, but their differentiation into cardiomyocytes is a time-consuming process. Although it has been demonstrated that PSME4 degrades acetyl-YAP1, the role of PSME4 in the cardiac commitment of MSCs has not been fully elucidated. Here we reported the novel role of PSME4 in MSCs cardiac commitment. It was found that overnight treatment with apicidin in primary-cultured mouse MSCs led to rapid cardiac commitment, while MSCs from PSME4 knock-out mice did not undergo this process. Cardiac commitment was also observed using lentivirus-mediated PSME4 knockdown in immortalized human MSCs. Immunofluorescence and Western blot experiments revealed that YAP1 persisted in the nucleus of PSME4 knockdown cells even after apicidin treatment. To investigate the importance of YAP1 removal, MSCs were treated with shYAP1 and apicidin simultaneously. This combined treatment resulted in rapid YAP1 elimination and accelerated cardiac commitment. However, overexpression of acetylation-resistant YAP1 in apicidin-treated MSCs impeded cardiac commitment. In addition to apicidin, the universal effect of histone deacetylase (HDAC) inhibition on cardiac commitment was confirmed using tubastatin A and HDAC6 siRNA. Collectively, this study demonstrates that PSME4 is crucial for promoting the cardiac commitment of MSCs. HDAC inhibition acetylates YAP1 and facilitates its translocation to the nucleus, where it is removed by PSME4, promoting cardiac commitment. The failure of YAP1 to translocate or be eliminated from the nucleus results in the MSCs' inability to undergo cardiac commitment.