• 제목/요약/키워드: cucumber plants

검색결과 393건 처리시간 0.024초

Observations of Infection Structures after Inoculation with Colletotrichum orbiculare on the Leaves of Cucumber Plants Pre-inoculated with Two Bacterial Strains Pseudomonas putida or Micrococcus luteus

  • Jeun, Yong-Chull;Lee, Kyung-Hoo
    • Mycobiology
    • /
    • 제33권3호
    • /
    • pp.131-136
    • /
    • 2005
  • Infection structures were observed at the penetration sites on the leaves of cucumber plants inoculated with Colletotrichum orbiculare using a fluorescence microscope. The cucumber plants were previously drenched with suspension of bacterial strains Pseudomonas putida or Micrococcus luteus. The plants pre-inoculated with both bacterial strains were resistant against anthracnose after inoculation with C. orbiculare. To investigate the resistance mechanism by both bacterial strains, the surface of infected leaves was observed at the different time after challenge inoculation. At 3 days after inoculation there were no differences in the germination and appressorium formation of conidia of C. orbiculare as well as in the callose formation of the plants between both bacteria pre-inoculated and non-treated. At 5 days, the germination and appressorium formation of the fungal conidia were, however, significantly decreased on the leaves of plants pre-inoculated with M. luteus at the concentration with $1.0{\times}10^7\;cfu/ml$. Furthermore, callose formation of plants cells at the penetration sites was apparently increased. In contrast, there were no defense reactions of the plants at the concentration with $1.0{\times}10^6\;cfu/ml$ of M. luteus. Similarly, inoculation P. putida caused no plant resistance at the low concentration, whereas increase of callose formation was observed at the higher concentration. The results of this study suggest that the resistant mechanisms might be differently expressed by the concentration of pre-treatment with bacterial suspension.

키틴분해세균, 키틴 및 그들의 산물이 함유된 미생물제에 의한 오이의 뿌리혹선충(Meloidogyne spp.) 방제 (Control of the Root-Knot Nematode (Meloidogyne spp.) on Cucumber by a Liquid Bio-Formulation Containing Chitinolytic Bacteria, Chitin and Their Products)

  • 하우종;김영철;정현채;박서기
    • 식물병연구
    • /
    • 제20권2호
    • /
    • pp.112-118
    • /
    • 2014
  • 본 연구는 키틴분해세균, 키틴 및 그들의 산물이 함유된 미생물제가 오이의 뿌리혹선충을 어느 정도 방제할 수 있는가를 알아보기 위하여 실시되었다. 미생물제는 3종의 키틴분해세균(Chromobacterium sp. C-61, Lysobacter engymogenes 및 Serratia plymuthica)을 키틴 + 최소기본배지에서 배양함으로서 조제되었다. 포트 조건에서 미생물제는 대조구에 비하여 오이의 생육을 증진시키고, 뿌리혹과 뿌리혹선충의 밀도를 감소시켰다. 비닐하우스에서 정식한 날부터 물 대신에 75배 희석된 미생물제를 5일 간격으로 6회 오이에 점적 관수하면, 30일 후 오이의 초장이 7% 증가하고 근권의 뿌리혹선충 밀도는 78% 감소되며, 60일 후에는 10%의 초장 증가와 69%의 밀도 감소를 나타냈다. 아울러, 이러한 효과는 미생물제가 직접 접촉된 부분에서만 일어났다. 한편, 뿌리혹선충에 심하게 감염되어 생육이 저조한 오이에 미생물제 원액을 10일 간격 3회 토양 관주하였을 경우에는 무처리구에서 37%의 오이가 죽었지만 처리구에서는 한 주도 죽지 않고, 37%의 생육 증가와 82%의 선충 감소를 보여 주었다. 따라서 본 미생물제는 오이 뿌리혹선충의 방제에 활용 가능하리라 판단되었다.

A Simple and Rapid Method for Functional Analysis of Plant Growth-promoting Rhizobacteria Using the Development of Cucumber Adventitious Root System

  • Bae, Yeoung-Seuk;Park, Kyung-Seok;Lee, Young-Gee;Choi, Ok-Hee
    • The Plant Pathology Journal
    • /
    • 제23권3호
    • /
    • pp.223-225
    • /
    • 2007
  • Many plant growth-promoting rhizobacteria (PGPRs) have been known for beneficial effects on plants including biological control of soilborne pathogens, induced systemic resistance to plant pathogens, phytohormone production, and improvement of nutrient and water uptake of plants. We developed a simple and rapid method for screening potential PGPR, especially phytohormone producing rhizobacteria, or for analyzing their functions in plant growth using cucumber seedling cuttings. Surface-sterilized cucumber seeds were grown in a plastic pot containing steamed vermiculite. After 7 days of cultivation, the upper part 2 cm in length of cucumber seedling, was cut and used as cucumber cuttings. The base of cutting stem was then dipped in a microcentrifuge tube containing 1.5ml of a bacterial suspension and incubated at $25^{\circ}C$ with a fluorescent light for 10 days. Number and length of developed adventitious roots from cucumber cuttings were examined. The seedling cuttings showed various responses to the isolates tested. Some isolates resulted in withering at the day of examination or in reduced number of roots developed. Several isolates stimulated initial development of adventitious roots showing more adventitious root hair number than that of untreated cuttings, while some isolate had more adventitious root hair number and longer adventitious roots than that of untreated control. Similar results were obtained from the trial with rose cuttings. Our results suggest that this bioassay method may provide a useful way for differentiating PGPR's functions involved in the development of root system.

Transgenic cucumber expressing the 54-kDa gene of Cucumber fruit mottle mosaic virus is highly resistance and protect non-transgenic scions from soil infection

  • Gal-On, A.;Wolf, D.;Antignus, Y.;Patlis, L.;Ryu, K.H.;Min, B.E.;Pearlsman, M.;Lachman, O.;Gaba, V.;Wang, Y.;Yang. J.;Zelcer, A.
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.148.2-149
    • /
    • 2003
  • Cucumber fruit mottle mosaic tobamovirus (CFMMV) causes severe mosaic symptoms with yellow mottling on leaves and fruits, and occasionally severe wilting of cucumber plants. No genetic source of resistance against this virus has been identified. The genes coding for the coat protein or the putative 54-kDa replicase were cloned into binary vectors under control of the SVBV promoter. Agrobacterium-mediated transformation was peformed on cotyledon explants of a parthenocarpic cucumber cultivar with superior competence for transformation. R1 seedlings were evaluated for resistance to CFMMV infection by lack of symptom expression, back inoculation on an alternative host and ELISA. From a total of 14 replicase-containing R1 lines, 8 exhibited immunity, while only 3 resistant lines were found among a total of 9 CP-containing lines. Line 144 homozygous for the 54-kDa replicase was selected for further resistance analysis. Line 144 was immune to CFMMV infection by mechanical and graft inoculation, or by root infection following planting in CFMMV-contaminated soil. Additionally, line 144 showed delay of symptom appearance following infection by other cucurbit-infecting tobamoviruses. Infection of line 144 plants with various potyviruses and cucumber mosaic cucumovirus did not break the resistance to CFMMV. The mechanism of resistance of line 144 appears to be RNA-mediated, however the means is apparently different from the gene silencing phenomenon. Homozygote line 144 cucumber as rootstock demonstrated for the first time protection of a non-transformed scion from soil inoculation with a soil borne pathogen, CFMMV.

  • PDF

Gene Expression Analysis in Cucumber Leaves Primed by Root Colonization of Pseudomonas chlororaphis O6 upon Challenge-inoculation with Corynespora cassiicola.

  • Kim, M.;Kim, Y. C.;B. H. Cho
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.90.1-90
    • /
    • 2003
  • Colonization of Pseudomonas chlororaphis O6, a nonpathogenic rhizobacterium, on the roots induced systemic resistance in cucumber plants against tai-get leaf spot, a foliar disease caused by Corynespora cassiicola. A cDNA library was constructed using mRNA extracted from the cucumber leaves 12 h after inoculation with C. cassiicola, which roots had been previously treated with O6. To identify the genes involved in the O6-mediated induced systemic resistance (ISR), we employed a subtractive hybridization method using mRNAs extracted from C cassiicola-inoculated cucumber leaves with and without previous O6 treatment on the plant roots. Differential screening of the cDNA library led to the isolation of 5 distinct genesencoding a GTP-binding protein, a putative senescence-associated protein, a galactinol synthase, a hypersensitive-induced reaction protein, and a putative aquaporin. Expressions of these genes are not induced by O6 colonization alone. Before challenge inoculation, no increase in the gene transcriptions could be detected in previously O6-treated and untreated plants but, upon subsequent inoculation with the pathogenic fungus, transcription levels in O6-treated plants rose significantly faster and stronger than in untreated plants. Therefore, the O6-mediated ISR may be associated with an enhanced capacity for the rapid and effective activation of cellular defense responses which becomes apparent only after challenge inoculation on the distal, untreated plant parts, as suggested by Conrath et al. (2002). This work was supported by a grant R11-2001-092-02006-0 from the Korea Science and Engineering Foundation through the Agricultural Plant Stress Research Center at Chonnam National University.

  • PDF

COMPARISON OF NUTRIENT STRESS DIAGNOSIS OF CUCUMBER PLANT USING VARIOUS PHYSIOLOGICAL INSTRUMENTS

  • Sung, J.H.;Suh, S.R.;Chung, G.C.;Ryu, Y.S.;Koh, B.J.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.770-776
    • /
    • 2000
  • This paper represents our efforts to diagnose nutrient stresses using physiological instruments in cucumber plants. The stresses could be detected by measuring and analyzing the difference of chlorophyll content, photosynthetic efficiency(Fv/Fm), differential temperature(DT), stomatal resistance and light absorbance values between deficient and controlled plants. From the all over experiments, the stresses could be first diagnosed in the 8th day after treatment and the overall diagnosis rate was estimated at more than 50%.

  • PDF

COMPARISON OF ENVIRONMENTAL STRESS DIAGNOSIS OF CUCUMBER PLANT USING VARIOUS PHYSIOLOGICAL INSTRUMENTS

  • Suh, S.R.;Chung, G.C.;Sung, J.H.;Ryu, Y.S.;Lee, K.H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.736-743
    • /
    • 2000
  • This paper represents our efforts to diagnose environmental stresses using physiological instruments in cucumber plants. The stresses could be detected by measuring and analyzing the difference of chlorophyll content, photosynthetic efficiency(Fv/Fm), differential temperature(DT), stomatal resistance and light absorbance values between treated and controlled plants. From the all over experiments, the stresses could be first diagnosed on the 1st to 5th day after treatment and the overall diagnosis rate was estimated at more than 50%.

  • PDF

Comparison of Nutrient Deficient Stress Diagnoses of Cucumber Plant Using Non-Destructive Physiological Instruments

  • Suh, Sang Ryong;Sung, Jae Hoon;Chung, Gap Chae
    • Agricultural and Biosystems Engineering
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 2001
  • This paper represents methods to diagnose nutrient deficient stresses of cucumber plants using several physiological instruments. The stresses could be detected by measuring and analyzing the difference of chlorophyll content, photochemical efficiency (Fv/Fm), temperature difference (DT) and light absorbance at wavelengths of 480nm, 560nm and 710nm between deficient and control plants. From the all over experiments, the stresses could be first diagnosed in the 3rd to 5th day in general after treatment and the overall diagnosis rate was estimated at more than 50% up to 100%.

  • PDF

Expression of a Functional Anti-Cucumber Mosaic Virus Single-Chain Variable Fragment Antibody in Tobacco Plants (Nacotiana tabacum)

  • Heng Chua Kek;Khalid Norzulaani;Othman Retina Yasmin
    • Journal of Plant Biotechnology
    • /
    • 제8권1호
    • /
    • pp.9-14
    • /
    • 2006
  • As an alternative method to produce low cost reagents for immunodiagnosis and protect the plants from viral disease, a gene encoding a single chain variable fragment(scFv) recombinant antibody targeted to the coat protein of cucumber mosaic virus (CMV) was expressed in Nacotiana tabacum. The source of the scFv recombinant antibody gene was from spleen tissue of an immunized mouse. The gene was initially cloned into the pCANTAB5E phagemid and expressed in E. coli. In the following study, the antibody gene was subcloned into the plant expression vector, pCAMBIA-1301 and introduced into tobacco leaf tissue via Agrobacterium tumefacients mediated transformation. After transformation, 56 out of 58 plants were shown to carry the desired anti-CMV scFv gene by PCR analysis. Overall, only 12.5% of the 56 putative transgenic plants were found to express the antibody to a detectable level.

The Bacillus zanthoxyli HS1 Strain Renders Vegetable Plants Resistant and Tolerant against Pathogen Infection and High Salinity Stress

  • Usmonov, Alisher;Yoo, Sung-Je;Kim, Sang Tae;Yang, Ji Sun;Sang, Mee Kyung;Jung, Ho Won
    • The Plant Pathology Journal
    • /
    • 제37권1호
    • /
    • pp.72-78
    • /
    • 2021
  • Various management systems are being broadly employed to minimize crop yield loss resulting from abiotic and biotic stresses. Here we introduce a Bacillus zanthoxyli HS1 strain as a potent candidate for managing manifold stresses on vegetable plants. Considering 16S rDNA sequence and biochemical characteristics, the strain is closely related to B. zanthoxyli. The B. zanthoxyli HS1's soil-drench confers disease resistance on tomato and paprika plants against infection with Ralstonia solanacearum and Phytophthora capsici, respectively. Root and shoot growths are also increased in B. zanthoxyli HS1-treated cabbage, cucumber, and tomato plants, compared with those in mock-treated plants, after application of high salinity solution. Moreover, the pretreatment of B. zanthoxyli HS1 on cabbage plants inhibits the degradation of chloroplast pigments caused by high salinity stresses, whereas the inhibitory effect is not observed in cucumber plants. These findings suggest that B. zanthoxyli HS1 stain inhibits disease development and confers tolerance to salinity stress on vegetable plants.